A051015 Zeisel numbers.
105, 1419, 1729, 1885, 4505, 5719, 15387, 24211, 25085, 27559, 31929, 54205, 59081, 114985, 207177, 208681, 233569, 287979, 294409, 336611, 353977, 448585, 507579, 982513, 1012121, 1073305, 1242709, 1485609, 2089257, 2263811, 2953711, 3077705, 3506371, 3655861, 3812599
Offset: 1
Keywords
Links
- M. F. Hasler and Lars Blomberg, Table of n, a(n) for n = 1..9607 (first 70 terms from _M. F. Hasler_)
- Kevin S. Brown, Zeisel Numbers, MathPages website.
- OEIS Wiki, Zeisel numbers.
- Eric Weisstein's World of Mathematics, Zeisel Number.
- Wikipedia, Zeisel number.
- Helmut Zeisel, Primes of the form 2^(k-1)+k, sci.math newsgroup, February 24, 1994.
Programs
-
Haskell
a051015 n = a051015_list !! (n-1) a051015_list = filter zeisel [3, 5 ..] where zeisel x = 0 `notElem` ds && length ds > 2 && all (== 0) (zipWith mod (tail ds) ds) && all (== q) qs where q:qs = (zipWith div (tail ds) ds) ds = zipWith (-) (tail ps) ps ps = 1 : a027746_row x -- Reinhard Zumkeller, Dec 15 2014
-
Mathematica
maxTerm = 3*10^7; ZeiselQ[n_] := Module[{a, b, pp, eq, r}, If[PrimeQ[n] || ! SquareFreeQ[n], False, pp = Join[{1}, FactorInteger[n][[All, 1]]]; If[Length[pp] <= 3, False, eq = Thread[Rest[pp] == b + a*Most[pp]]; r = Reduce[eq, {a, b}, Integers]; r =!= False]]]; p = 3; A051015 = Reap[While[p^3 < maxTerm, q = NextPrime[p]; While[p*q^2 < maxTerm, If[ ! IntegerQ[a = (q - p)/(p - 1)] || !IntegerQ[b = (p^2 - q)/(p - 1)], q = NextPrime[q]; Continue[]]; r = b + a*q; n = r*p*q; While[PrimeQ[r] && n < maxTerm, Sow[n]; r = b + a*r; n *= r]; q = NextPrime[q]]; p = NextPrime[p]]][[2, 1]]; A051015 = Select[Sort[A051015], ZeiselQ] (* Jean-François Alcover, Oct 31 2012, with much help from Giovanni Resta *)
-
PARI
is_A051015(n)={#(n=factor(n)~)>2 & vecmax(n[2,])==1 & denominator(n[2,1]=(n[1,3]-n[1,2])/(n[1,2]-n[1,1]))==1 & #Set(n[1,]-n[2,1]*concat(1,vecextract(n[1,],"^-1")))==1} \\ - M. F. Hasler, Oct 31 2012
Extensions
More terms from David Wasserman, Feb 19 2002
Extended by Karsten Meyer, Jun 08 2006, but values were incorrect. M. F. Hasler, Oct 31 2012
Values up to a(70) computed by Jean-François Alcover and double-checked by M. F. Hasler, Oct 31 2012
Values < 10^15 by Lars Blomberg, Nov 02 2012
Comments