cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A252094 First member of a pair (A,B) to define the n-th Zeisel number, cf. A051015.

Original entry on oeis.org

1, 4, 1, 2, 3, 2, 10, 2, 6, 4, 13, 8, 3, 2, 25, 5, 9, 28, 1, 6, 5, 17, 34, 15, 9, 23, 8, 49, 55, 12, 4, 33, 14, 2, 24, 36, 25, 2, 26, 4, 2, 42, 29, 11, 8, 2, 10, 4, 88, 6, 47, 32, 48, 20, 94, 37, 23, 57, 24, 3, 5, 115, 6, 118, 9, 44, 3, 46, 68, 5, 30, 139, 50, 10, 51, 14, 77, 20, 54, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2014

Keywords

Comments

Let p(0) = 1 and p(i+1) = A*p(i) + B, if p(i) is prime for i = 1..k, then z = p(1) * ... * p(k) is called a Zeisel number.

Examples

			.  n |   A=a(n)  B=A252095(n) | p(1)  p(2)  p(3) | A051015(n)
. ---+------------------------+------------------------------
.  1 |   1       2            |   3     5     7  |        105
.  2 |   4      -1            |   3    11    43  |       1419
.  3 |   1       6            |   7    13    19  |       1729
.  4 |   2       3            |   5    13    29  |       1885
.  5 |   3       2            |   5    17    53  |       4505
.  6 |   2       5            |   7    19    43  |       5719
.  7 |  10      -7            |   3    23   223  |      15387
.  8 |   2       9            |  11    31    71  |      24211
.  9 |   6      -1            |   5    29   177  |      25085
. 10 |   4       3            |   7    31   141  |      27449
. 11 |  13     -10            |   3    29   367  |      31929
. 12 |   8      -3            |   5    37   295  |      54205 .
		

Crossrefs

Cf. A051015, A027746, A252095 (B values).

Programs

  • Haskell
    a252094 n = a252094_list !! (n-1)
    (a252094_list, a252095_list) = unzip $ f 3 where
       f x = if z then (q, p - q) : f (x + 2) else f (x + 2)  where
             z = 0 `notElem` ds && length ds > 2 &&
                 all (== 0) (zipWith mod (tail ds) ds) && all (== q) qs
             q:qs = (zipWith div (tail ds) ds)
             ds = zipWith (-) (tail ps) ps
             ps = 1 : ps'; ps'@(p:_) = a027746_row x

A252095 Second member of a pair (A,B) to define the n-th Zeisel number, cf. A051015.

Original entry on oeis.org

2, -1, 6, 3, 2, 5, -7, 9, -1, 3, -10, -3, 8, 3, -22, 6, -2, -25, 36, 5, 8, -12, -31, -8, 2, -18, 5, -46, -52, -1, 27, -28, -3, 9, -17, -31, -18, 59, -19, 33, 65, -37, -22, 6, 15, 69, 9, 39, -85, 25, -42, -25, -43, -9, -91, -30, -12, -52, -13, 68, 42, -112, 35, -115, 20, -37, 8, -39, -63, 48, -19, -136, -43, 21, -44, 9, -72, -3, -47, 125
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2014

Keywords

Examples

			 See A252094.
		

Crossrefs

Cf. A051015, A027746, A252094 (A values).

Programs

  • Haskell
    a252095 n = a252095_list !! (n-1)
    -- where a252095_list is defined in A252094.

A051200 Except for initial term, primes of form "n 3's followed by 1".

Original entry on oeis.org

3, 31, 331, 3331, 33331, 333331, 3333331, 33333331, 333333333333333331, 3333333333333333333333333333333333333331, 33333333333333333333333333333333333333333333333331
Offset: 1

Views

Author

Keywords

Comments

"A remarkable pattern that is entirely accidental and leads nowhere" - M. Gardner, referring to the first 8 terms.
a(2)*a(3)*a(4) = 34179391, a Zeisel number (A051015) with coefficients (10,21).
a(2)*a(3)*a(4)*a(5) = 1139233281421, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(6) = 379741768929343351, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(7) = 1265805010367017001532181, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(8) = 42193497392022209194699696424911, a Zeisel number with coefficients (10,21).
Besides first 3, primes of the form (10^n-7)/3, n>1. See A123568. - Vincenzo Librandi, Aug 06 2010
The integer lengths of the terms of the sequence are 1, 2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, 382, etc. - Harvey P. Dale, Dec 01 2018

References

  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 194.
  • W. Sierpiński, 200 Zadan z Elementarnej Teorii Liczb, Warsaw, 1964; Problem 88 [in English: 200 Problems from the Elementary Theory of Numbers]
  • W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, pp. 8, 56-57.
  • F. Smarandache, Properties of numbers, University of Craiova, 1973

Crossrefs

Programs

  • Mathematica
    Join[{3},Select[Rest[FromDigits/@Table[PadLeft[{1},n,3], {n,50}]], PrimeQ]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

Union of 3 and A123568.

Extensions

More terms from James Sellers
Cross reference added by Harvey P. Dale, May 21 2014

A061421 Primes of the form 2^n+n+1.

Original entry on oeis.org

2, 7, 71, 110427941548649020598956093796432407239217743554726184882600387580788973
Offset: 1

Views

Author

Jason Earls, May 02 2001

Keywords

Comments

Next term is 2^1884+1884+1, with 568 digits and is too large to include. - Emeric Deutsch, May 13 2006
The Wikipedia article "Zeisel number" gives a historical connection to A051015. - Jonathan Sondow, Oct 17 2017

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(2^n+n+1)=true then 2^n+n+1 else fi end: seq(a(n),n=0..1000); # Emeric Deutsch, May 13 2006
  • Mathematica
    {ta={{0}}, tb={{0}}};Do[g=n;s=2^n+n+1; If[PrimeQ[s], Print[n];ta=Append[ta, n]; tb=Append[tb, s]], {n, 1, 10000}];{ta, tb, g} (* Labos Elemer, Nov 19 2004 *)

Extensions

Edited by N. J. A. Sloane, May 04 2007

A110704 Primes of form "n 42's followed by 43".

Original entry on oeis.org

43, 4243, 424243, 42424243, 4242424243, 4242424242424243, 424242424242424242424242424242424243, 42424242424242424242424242424242424242424242424243
Offset: 1

Views

Author

Ray Chandler, Aug 04 2005

Keywords

Comments

Products of first three (77402711107), four (3283751424862167001) and five (13931066652821050218557005243) terms are Zeisel numbers (A051015) with coefficients (100,-57).

Crossrefs

Cf. A110705.

Programs

  • Mathematica
    t = 1; Do[ t = t*100 - 57; If[PrimeQ[t], Print[t]], {n, 0, 24}]

A259172 Numbers in A259145 that are neither prime nor semiprime.

Original entry on oeis.org

561, 595, 1105, 1235, 1245, 1495, 1547, 1885, 2405, 2555, 2717, 2849, 3115, 3495, 3655, 3657, 3689, 3815, 4521, 4795, 4945, 5035, 5385, 5395, 5453, 5457, 5709, 5865, 6083, 6141, 6251, 6285, 6365, 6391, 6501, 6695, 6755, 6969, 7021, 7887, 8113, 8255, 8355
Offset: 1

Views

Author

Keywords

Comments

Regarding the distribution: Let K be the union of primes and semiprimes in A259145. Let S be the set of other terms. The growth rate of the cardinality of S with respect to the cardinality of K is significantly slower. For instance, if we take the first 50000 terms of A259145, about 32.5 percent are contained in S. If we take the first 350000 terms, about 38.2 percent are contained in S.
a(n) that are in A002997 (Carmichael numbers) for a(n) <= 10^6 are 561, 1105, 8911, 10585, 29341, 825265.
a(n) that are in A051015 (Zeisel numbers) for a(n) <= 3*10^6 are 1885, 353977, 2953711.

Crossrefs

Subsequence of A000469, A033942, A050384 (conjuctered).

Programs

  • Mathematica
    Select[Range[25000], PrimeQ[#^2 - EulerPhi[#]] && PrimeNu[#] > 2 &]

Formula

A001221(a(n)) > 2.
A000005(a(n)) = 2^k, k >= 3.

A200525 Zeisel numbers with p(0)=4.

Original entry on oeis.org

385, 2585, 7315, 8911, 27001, 39905, 48391, 87283, 192211, 196285, 319705, 410089, 425585, 441091, 624605, 679855, 1310185, 1899163, 2460439, 2586971, 2777041, 6654005, 7042411, 7501261, 8291459, 9516637, 10484585, 11141671, 12527281, 13015891, 13788319
Offset: 1

Views

Author

Karsten Meyer, Nov 18 2011

Keywords

Comments

Pick any integers A and B and consider the linear recurrence relation given by p(0) = 4, p(i + 1) = A*p(i) + B. If for some n > 2, p(1), p(2), ..., p(n) are distinct primes, then the product of these primes is called a Zeisel number.

Examples

			a=2, b=-3 => p(1) = (4*2)+(-3) = 5; p(2) = (5*2)+(-3) = (7); p(3) = (7*2)+(-3) = 11 => 5*7*11 = 385.
a=2, b=5 => p(1) = (4*2)+5 = 13; p(2) = (13*2)+5 = 31; p(3) = (31*2)+5 = 67 => 13*31*67 = 27001.
		

Crossrefs

Cf. A051015.

Programs

  • Rexx
    n0=4
    do m=1 to 53
      a=2*m
      do b=(1-(4*a)) to 999
        n1=(n0*a)+b
        n2=(n1*a)+b
        n3=(n2*a)+b
        z=n1*n2*n3
        say n0 a b
        lineout("zeisel_4.txt",z||" = "||n1||"*"||n2||"*"||n3||"      "||a||" "||b||" n0="||n0)
        end
      end

A225217 Smallest Zeisel number with n distinct prime factors.

Original entry on oeis.org

105, 114985, 1136972771, 717429818501, 42193497392022209194699696424911, 2259851975647498450164729386247520625304964981, 6496837611815817806848181714391334227919720933013147552348535557303, 13839515413469463429656389971119647159455019743381019128792232352396451034929601
Offset: 3

Views

Author

Arkadiusz Wesolowski, May 02 2013

Keywords

Comments

a(11) > 10^105. - Bert Dobbelaere, Apr 19 2019

Crossrefs

Cf. A051015.

Extensions

a(7)-a(10) from Bert Dobbelaere, Apr 19 2019
Showing 1-8 of 8 results.