cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051027 a(n) = sigma(sigma(n)) = sum of the divisors of the sum of the divisors of n.

Original entry on oeis.org

1, 4, 7, 8, 12, 28, 15, 24, 14, 39, 28, 56, 24, 60, 60, 32, 39, 56, 42, 96, 63, 91, 60, 168, 32, 96, 90, 120, 72, 195, 63, 104, 124, 120, 124, 112, 60, 168, 120, 234, 96, 252, 84, 224, 168, 195, 124, 224, 80, 128, 195, 171, 120, 360, 195, 360, 186, 234, 168, 480, 96
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 4 because sigma(2)=1+2=3 and sigma(3)=1+3=4. - _Zak Seidov_, Aug 29 2012
		

References

  • József Sándor, On the composition of some arithmetic functions, Studia Univ. Babeș-Bolyai, Vol. 34, No. 1 (1989), pp. 7-14.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 39.

Crossrefs

Cf. A000203.

Programs

  • Maple
    with(numtheory): [seq(sigma(sigma(n)), n=1..100)];
  • Mathematica
    DivisorSigma[1,DivisorSigma[1,Range[100]]] (* Zak Seidov, Aug 29 2012 *)
  • PARI
    a(n)=sigma(sigma(n)); \\ Joerg Arndt, Feb 16 2014
    
  • Python
    from sympy import divisor_sigma as sigma
    def a(n): return sigma(sigma(n))
    print([a(n) for n in range(1, 62)]) # Michael S. Branicky, Dec 05 2021

Formula

a(n) = A000203(A000203(n)). - Zak Seidov, Aug 29 2012
a(p) = sigma(p+1) = A000203(p+1), for p prime. - Wesley Ivan Hurt, Feb 14 2014
a(n) = 2*n iff n = 2^q with M_(q+1) = 2^(q+1) - 1 is a Mersenne prime, hence iff n = 2^q with q in A090748. - Bernard Schott, Aug 08 2019
a(n) >= 2*n for even n, with equality only when n = 2^k and 2^(k+1) - 1 is prime (Sándor, 1989). - Amiram Eldar, Mar 09 2021