cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Judson Neer

Judson Neer's wiki page.

Judson Neer has authored 7 sequences.

A349932 Product of n and its binary ones' complement.

Original entry on oeis.org

0, 2, 0, 12, 10, 6, 0, 56, 54, 50, 44, 36, 26, 14, 0, 240, 238, 234, 228, 220, 210, 198, 184, 168, 150, 130, 108, 84, 58, 30, 0, 992, 990, 986, 980, 972, 962, 950, 936, 920, 902, 882, 860, 836, 810, 782, 752, 720, 686, 650, 612, 572, 530, 486, 440, 392, 342, 290
Offset: 1

Author

Judson Neer, Dec 05 2021

Keywords

Examples

			For n = 9, a(9) = 0b1001 * 0b0110 = 9 * 6 = 54.
		

Crossrefs

Cf. A035327.

Programs

  • PARI
    a(n) = n*bitneg(n, exponent(n)) \\ Andrew Howroyd, Dec 05 2021
    
  • Python
    def a(n): return 0 if n == 0 else n * (n^((1 << n.bit_length()) - 1))
    print([a(n) for n in range(1, 58)]) # Michael S. Branicky, Dec 05 2021

Formula

a(n) = n*A035327(n).

A276115 Numbers whose digits have a permutation that is a palindrome.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 131, 133, 141, 144, 151, 155, 161, 166, 171, 177, 181, 188, 191, 199, 202, 211, 212, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 232, 233, 242, 244, 252, 255, 262, 266
Offset: 1

Author

Judson Neer, Aug 19 2016

Keywords

Comments

Permutations with leading zeros are not considered as palindromic, thus (for example) 10 is not included in the sequence.
Also numbers in which at most 1 digit occurs an odd number of times and (if there is more than one digit) at least 2 digits are nonzero. - David A. Corneth, Aug 21 2016, corrected by Robert Israel, Aug 31 2016

Crossrefs

Cf. A084050 (for a sequence where leading zero numbers are included).

Programs

  • Maple
    filter:= proc(n) local L,M;
      if n < 10 then return true fi;
      L:= convert(n,base,10);
      M:= [seq(numboccur(j,L),j=0..9)];
      convert(M mod 2, `+`) <= 1 and convert(M[2..-1],`+`)>=2
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 31 2016
  • PARI
    is(n) = {my(v = concat(vecsort(digits(n)), ["a"]), prev=1, odd=0); if(#v>2&&v[#v-2]==0,return(0)); for(i=1,#v-1, if(v[i]!=v[i+1], odd+=(i-prev+1)%2; if(odd==2,return(0)); prev = i + 1)); 1} \\ David A. Corneth, Aug 21 2016

Extensions

101 inserted by Robert Israel, Aug 31 2016

A059160 Number of ordered ways of writing n as a sum of 5 generalized pentagonal numbers (A001318).

Original entry on oeis.org

1, 5, 15, 30, 45, 56, 65, 85, 115, 150, 171, 175, 185, 205, 260, 300, 325, 340, 350, 415, 440, 485, 500, 505, 580, 581, 650, 645, 675, 815, 815, 910, 845, 865, 985, 951, 1130, 1030, 1060, 1155, 1150, 1370, 1265, 1410, 1495, 1420, 1545, 1460, 1600, 1675, 1690
Offset: 0

Author

Judson Neer, Feb 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[(QPochhammer[-q, q^3]* QPochhammer[-q^2, q^3]*QPochhammer[q^3, q^3])^5, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jun 12 2017 *)

Formula

G.f.: f(x, x^2)^5 where f(,) is Ramanujan's two-variable theta function. - Michael Somos, Jun 08 2012

A051027 a(n) = sigma(sigma(n)) = sum of the divisors of the sum of the divisors of n.

Original entry on oeis.org

1, 4, 7, 8, 12, 28, 15, 24, 14, 39, 28, 56, 24, 60, 60, 32, 39, 56, 42, 96, 63, 91, 60, 168, 32, 96, 90, 120, 72, 195, 63, 104, 124, 120, 124, 112, 60, 168, 120, 234, 96, 252, 84, 224, 168, 195, 124, 224, 80, 128, 195, 171, 120, 360, 195, 360, 186, 234, 168, 480, 96
Offset: 1

Author

Keywords

Examples

			a(2) = 4 because sigma(2)=1+2=3 and sigma(3)=1+3=4. - _Zak Seidov_, Aug 29 2012
		

References

  • József Sándor, On the composition of some arithmetic functions, Studia Univ. Babeș-Bolyai, Vol. 34, No. 1 (1989), pp. 7-14.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 39.

Crossrefs

Cf. A000203.

Programs

  • Maple
    with(numtheory): [seq(sigma(sigma(n)), n=1..100)];
  • Mathematica
    DivisorSigma[1,DivisorSigma[1,Range[100]]] (* Zak Seidov, Aug 29 2012 *)
  • PARI
    a(n)=sigma(sigma(n)); \\ Joerg Arndt, Feb 16 2014
    
  • Python
    from sympy import divisor_sigma as sigma
    def a(n): return sigma(sigma(n))
    print([a(n) for n in range(1, 62)]) # Michael S. Branicky, Dec 05 2021

Formula

a(n) = A000203(A000203(n)). - Zak Seidov, Aug 29 2012
a(p) = sigma(p+1) = A000203(p+1), for p prime. - Wesley Ivan Hurt, Feb 14 2014
a(n) = 2*n iff n = 2^q with M_(q+1) = 2^(q+1) - 1 is a Mersenne prime, hence iff n = 2^q with q in A090748. - Bernard Schott, Aug 08 2019
a(n) >= 2*n for even n, with equality only when n = 2^k and 2^(k+1) - 1 is prime (Sándor, 1989). - Amiram Eldar, Mar 09 2021

A049883 Primes in the Jacobsthal sequence (A001045).

Original entry on oeis.org

3, 5, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243
Offset: 1

Author

Keywords

Comments

All terms, except a(2) = 5, are of the form (2^p + 1)/3 - the Wagstaff primes A000979 = {3, 11, 43, 683, 2731, 43691, 174763, ...}.
Indices of prime Jacobsthal numbers are listed in A107036 = {3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, ...}.
For n > 1, A107036(n) = A000978(n) (numbers m such that (2^m + 1)/3 is prime). - Alexander Adamchuk, Oct 10 2006

Crossrefs

Programs

A051357 Chernoff sequence A006939 divided by 2.

Original entry on oeis.org

1, 6, 180, 37800, 87318000, 2622159540000, 1338638666765400000, 12984380089637682726000000, 2896722619368127899492763620000000, 18740906719713843949122453226304292600000000
Offset: 1

Author

Keywords

Programs

  • Magma
    [(&*[NthPrime(k)^(n-k+1): k in [1..n]])/2: n in [1..15]]; // G. C. Greubel, Oct 14 2018
  • Mathematica
    Table[Product[Prime[k]^(n - k + 1), {k, 1, n}]/2, {n, 1, 15}] (* G. C. Greubel, Oct 14 2018 *)
  • PARI
    for(n=1, 15, print1(prod(k=1,n, prime(k)^(n-k+1))/2, ", ")) \\ G. C. Greubel, Oct 14 2018
    

Formula

a(n) = Product_{k=1..n} prime(k)^(n-k+1) / 2.

A051572 a(1) = 5, a(n) = sigma(a(n-1)).

Original entry on oeis.org

5, 6, 12, 28, 56, 120, 360, 1170, 3276, 10192, 24738, 61440, 196584, 491520, 1572840, 5433480, 20180160, 94859856, 355532800, 1040179456, 2143289344, 4966055344, 10092086208, 31800637440, 137371852800, 641012414823
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Mathematica
    NestList[Plus@@Divisors[#] &, 5, 25] (* Alonso del Arte, Apr 28 2011 *)
  • PARI
    a=[5];for(i=2,10,a=concat(a,sigma(a[#a]))); a \\ Charles R Greathouse IV, Oct 03 2011
    
  • Python
    from itertools import accumulate, repeat # requires Python 3.2 or higher
    from sympy import divisor_sigma
    A051572_list = list(accumulate(repeat(5,100), lambda x, _: divisor_sigma(x)))
    # Chai Wah Wu, May 02 2015