A051119 a(n) = n/p^k, where p = largest prime dividing n and p^k = highest power of p dividing n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 8, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 4, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 16, 1, 2, 3, 4, 1, 2, 5, 8, 3, 2, 1, 12, 1, 2, 9, 1, 5, 6, 1, 4, 3, 10, 1, 8, 1, 2, 3, 4, 7, 6, 1, 16, 1, 2, 1, 12, 5, 2, 3, 8, 1, 18, 7, 4, 3, 2, 5, 32, 1, 2, 9, 4, 1
Offset: 1
Examples
a(36) = 4 because 36/3^2 = 4, 3^2 is highest power dividing 36 of largest prime dividing 36. a(50) = 50/5^2 = 2.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A053585.
Programs
-
Mathematica
f[n_]:=Module[{c=Last[FactorInteger[n]]},n/First[c]^Last[c]]; Array[ f, 110] (* Harvey P. Dale, Oct 14 2011 *)
-
PARI
a(n) = if(n>1, my(f=factor(n)); n/f[#f~, 1]^f[#f~, 2], 1); \\ Michel Marcus, Jan 10 2025
-
Python
from sympy import factorint, primefactors def a053585(n): if n==1: return 1 p = primefactors(n)[-1] return p**factorint(n)[p] def a(n): return n/a053585(n) # Indranil Ghosh, May 19 2017
Formula
a(n) = n/A053585(n).
Extensions
More terms from James Sellers, Jan 21 2000