cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051119 a(n) = n/p^k, where p = largest prime dividing n and p^k = highest power of p dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 8, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 4, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 16, 1, 2, 3, 4, 1, 2, 5, 8, 3, 2, 1, 12, 1, 2, 9, 1, 5, 6, 1, 4, 3, 10, 1, 8, 1, 2, 3, 4, 7, 6, 1, 16, 1, 2, 1, 12, 5, 2, 3, 8, 1, 18, 7, 4, 3, 2, 5, 32, 1, 2, 9, 4, 1
Offset: 1

Views

Author

Keywords

Examples

			a(36) = 4 because 36/3^2 = 4, 3^2 is highest power dividing 36 of largest prime dividing 36.
a(50) = 50/5^2 = 2.
		

Crossrefs

Cf. A053585.

Programs

  • Mathematica
    f[n_]:=Module[{c=Last[FactorInteger[n]]},n/First[c]^Last[c]]; Array[ f, 110] (* Harvey P. Dale, Oct 14 2011 *)
  • PARI
    a(n) = if(n>1, my(f=factor(n)); n/f[#f~, 1]^f[#f~, 2], 1); \\ Michel Marcus, Jan 10 2025
  • Python
    from sympy import factorint, primefactors
    def a053585(n):
        if n==1: return 1
        p = primefactors(n)[-1]
        return p**factorint(n)[p]
    def a(n): return n/a053585(n) # Indranil Ghosh, May 19 2017
    

Formula

a(n) = n/A053585(n).

Extensions

More terms from James Sellers, Jan 21 2000