A051185 Number of intersecting families of an n-element set. Also number of n-variable clique Boolean functions.
2, 6, 40, 1376, 1314816, 912818962432, 291201248266450683035648, 14704022144627161780744368338695925293142507520, 12553242487940503914363982718112298267975272720808010757809032705650591023015520462677475328
Offset: 1
Examples
a(2) = 6 because we have: {}, {{1}}, {{2}}, {{1, 2}}, {{1}, {1, 2}}, {{2}, {1, 2}}. - _Geoffrey Critzer_, Aug 16 2013
References
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- Pogosyan G., Miyakawa M., A. Nozaki, Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.
Links
- Grant Pogosyan, Miyakawa Masahiro, Akihiro Nozaki, Number of Clique Boolean Functions, 1988.
- Index entries for sequences related to Boolean functions
Programs
-
Mathematica
Table[Length[ Select[Subsets[Subsets[Range[1, n]]], Apply[And, Flatten[Table[ Table[Intersection[#[[i]], #[[j]]] != {}, {i, 1, Length[#]}], {j, 1, Length[#]}]]] &]], {n, 1, 4}] (* Geoffrey Critzer, Aug 16 2013 *)
Extensions
a(8)-a(9) by Andries E. Brouwer, Aug 07 2012, Dec 11 2012
Comments