A051222 Numbers k such that Bernoulli number B_{k} has denominator 6.
2, 14, 26, 34, 38, 62, 74, 86, 94, 98, 118, 122, 134, 142, 146, 158, 182, 194, 202, 206, 214, 218, 254, 266, 274, 278, 298, 302, 314, 326, 334, 338, 362, 386, 394, 398, 422, 434, 446, 454, 458, 482, 494, 514, 518, 526, 538, 542, 554, 566, 578
Offset: 1
References
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
- C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, CRC Press, 2005, Sect. 3.9.
- H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 10.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Paul Erdős and Samuel S. Wagstaff, Jr., The fractional parts of the Bernoulli numbers, Illinois J. Math. 24 (1980), pp. 104-112, MR 81c:10064.
- Richard R. Forberg, A051222 and Exponential Expressions the Reproduce Certain Prime Subsets, 2025.
- K. L. Jensen, Om talteoretiske Egenskaber ved de Bernoulliske Tal, Nyt Tidskrift für Math. Afdeling B 28 (1915), pp. 73-83.
- R. Rado, A note on the Bernoullian numbers, J. London Math. Soc. 9 (1934) 88-90.
- Richard Sunseri, Zeros of p-adic L-functions and densities relating to Bernoulli numbers, PhD thesis, University of Illinois, 1979.
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Except for 2, all terms are even nontotient numbers. Proper subset of A005277: e.g., 50 and 90 are not here. - Labos Elemer
A112772 is a subsequence. - Bernd C. Kellner, Mar 21 2018
Programs
-
Mathematica
di[x_] := Divisors[x] dp[x_] := Part[di[x], Flatten[Position[PrimeQ[1+di[x]], True]]]+1 Do[s=Length[dp[n]]; If[Equal[s, 2], Print[n]], {n, 1, 10000}] (* Labos Elemer *) Do[s=Denominator[BernoulliB[n]]; If[Equal[s, 6], Print[n]], {n, 1, 1000}] (* Labos Elemer *) Do[s=1+Divisors[n];s1=Flatten[Position[PrimeQ[s], True]]; (*analogous [suitably modified] pairs of programs yield A051225-A051230*) s2=Part[s, s1];If[Equal[s2, {2, 3}], Print[n]], {n, 1, 100}] (* Labos Elemer *) Select[Range[600],Denominator[BernoulliB[#]]==6&] (* Harvey P. Dale, Dec 08 2011 *)
-
PARI
for(n=1,10^3,if(denominator(bernfrac(n))==6,print1(n,", "))); \\ Joerg Arndt, Oct 28 2014
-
PARI
is(n)=if(n%2,return(0)); fordiv(n/2,d,if(isprime(2*d+1)&&d>1, return(0))); 1 \\ Charles R Greathouse IV, Oct 28 2014
Extensions
Additional comments and references from Sam Wagstaff, Dec 20 2005
Comments