A124623 Number of unit squares having center within inscribed circle of an n X n integer square.
1, 4, 9, 12, 21, 32, 37, 52, 69, 80, 97, 112, 137, 156, 177, 208, 225, 256, 293, 316, 349, 384, 421, 448, 489, 540, 577, 616, 665, 716, 749, 812, 861, 912, 973, 1020, 1085, 1124, 1201, 1264, 1313, 1396, 1457, 1528, 1597, 1664, 1741, 1804, 1885, 1976, 2053, 2128
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A051233.
Programs
-
Mathematica
f[n_] := 4*Length[ Select[ Flatten[ Table[ If[ OddQ@ n, x^2 + y^2, x(x -1) + y(y -1) + 1/2], {x, n/2}, {y, n/2}]], 4# < n^2 &]] + If[ OddQ@ n, 2(n -1) + 1, 0]; Array[f, 52] (* Robert G. Wilson v, Mar 22 2017 *)
Formula
a(n) = n^2 - 4*k(n); k(n) = number of exterior centers per quadrant.
a(2n-1) = A036704(n-1). - Robert G. Wilson v, Mar 28 2017
a(2n) = 4*A120883(n-1). - Robert G. Wilson v, Mar 28 2017
Comments