A058092 McKay-Thompson series of class 9a for the Monster group.
1, 14, 65, 156, 456, 1066, 2250, 4720, 9426, 17590, 32801, 58904, 102650, 176646, 298066, 491792, 803923, 1293450, 2051156, 3221716, 5004028, 7682744, 11703580, 17663312, 26423351, 39248618, 57866503, 84685920, 123188502, 178054416, 255782770, 365467216
Offset: 0
Examples
G.f. = 1 + 14*x + 65*x^2 + 156*x^3 + 456*x^4 + 1066*x^5 + 2250*x^6 + 4720*x^7 + ... T9a = 1/q + 14*q^2 + 65*q^5 + 156*q^8 + 456*q^11 + 1066*q^14 + 2250*q^17 + ...
References
- B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 179.
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 392.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- G. Manco, How to calculate moduli alpha_3n of the Ramanujan's q_3 theory, Mathematics StackExchange, Jan 2017.
- Index entries for McKay-Thompson series for Monster simple group
Programs
-
Mathematica
a[0] = 1; a[n_] := Module[{A = x*O[x]^n}, A = (QPochhammer[x^3 + A] / QPochhammer[x + A])^12; SeriesCoefficient[((1 + 27*x*A)^2/A)^(1/3), n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 06 2015, adapted from Michael Somos's PARI script *) CoefficientList[Series[(QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3)^2 / (QPochhammer[x, x]^2*QPochhammer[x^3, x^3]^4), {x, 0, 50}], x] (* Vaclav Kotesovec, Nov 07 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( ((1 + 27 * x * A)^2 / A)^(1/3), n))}; /* Michael Somos, Jun 16 2012 */
Formula
Expansion of (27 * x * (b(x)^3 + c(x)^3)^2 / (b(x) * c(x))^3)^(1/3) in powers of x where b(), c() are cubic AGM theta functions, Michael Somos, Jun 16 2012
Convolution cube is A030197.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Nov 07 2015
Comments