cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A058092 McKay-Thompson series of class 9a for the Monster group.

Original entry on oeis.org

1, 14, 65, 156, 456, 1066, 2250, 4720, 9426, 17590, 32801, 58904, 102650, 176646, 298066, 491792, 803923, 1293450, 2051156, 3221716, 5004028, 7682744, 11703580, 17663312, 26423351, 39248618, 57866503, 84685920, 123188502, 178054416, 255782770, 365467216
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2000

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
In volume 2 of Raamunjuan's Notebooks is an obscure equation involving t(1-t) on the left and GG' on the right and they both are equal to the g.f. of 1/3 of this sequence. Here t^(1/3) = c(x)/a(x), (1-t)^(1/3) = b(x)/a(x) since a(x)^3 = b(x)^3 + c(x)^3. N.B. The left side was (t(1-t))^(1/3) but the exponent should be (-1/3) instead which is why the equation was so obscure. - Michael Somos, Mar 13 2019

Examples

			G.f. = 1 + 14*x + 65*x^2 + 156*x^3 + 456*x^4 + 1066*x^5 + 2250*x^6 + 4720*x^7 + ...
T9a = 1/q + 14*q^2 + 65*q^5 + 156*q^8 + 456*q^11 + 1066*q^14 + 2250*q^17 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 179.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 392.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{A = x*O[x]^n}, A = (QPochhammer[x^3 + A] / QPochhammer[x + A])^12; SeriesCoefficient[((1 + 27*x*A)^2/A)^(1/3), n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 06 2015, adapted from Michael Somos's PARI script *)
    CoefficientList[Series[(QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3)^2 / (QPochhammer[x, x]^2*QPochhammer[x^3, x^3]^4), {x, 0, 50}], x] (* Vaclav Kotesovec, Nov 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( ((1 + 27 * x * A)^2 / A)^(1/3), n))}; /* Michael Somos, Jun 16 2012 */

Formula

Expansion of (27 * x * (b(x)^3 + c(x)^3)^2 / (b(x) * c(x))^3)^(1/3) in powers of x where b(), c() are cubic AGM theta functions, Michael Somos, Jun 16 2012
Convolution cube is A030197.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Nov 07 2015

A258941 Convolution inverse of A058537.

Original entry on oeis.org

1, -7, 41, -253, 1555, -9532, 58463, -358600, 2199546, -13491360, 82752059, -507576937, 3113328401, -19096245457, 117130782240, -718445946527, 4406737223117, -27029636742811, 165791883077354, -1016918901125280, 6237482995373629, -38258895644996020
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Convolution square is A328785. - Michael Somos, Nov 02 2019

Examples

			G.f. = 1 - 7*x + 41*x^2 - 253*x^3 + 1555*x^4 - 9532*x^5 + ... - _Michael Somos_, Nov 02 2019
G.f. = q - 7*q^7 + 41*q^13 - 253*q^19 + 1555*q^25 - 9532*q^31 + ... - _Michael Somos_, Nov 02 2019
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[QPochhammer[x, x] * QPochhammer[x^3, x^3]^2 / (QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3), {x, 0, 50}], x]
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/6)* eta[q]*eta[q^9]^2/(eta[q]^3 + 9*eta[q^9]^3), {q,0,60}], q] (* G. C. Greubel, Jun 22 2018 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[x] QPochhammer[x^3]^2 / (QPochhammer[x]^3 + 9 x QPochhammer[x^9]^3), {x, 0, n}]; (* Michael Somos, Nov 02 2019 *)
  • PARI
    q='q+O('q^50); A = eta(q)*eta(q^3)^2/(eta(q)^3 + 9*q*eta(q^9)^3); Vec(A) \\ G. C. Greubel, Jun 22 2018

Formula

a(n) ~ (-1)^n * c * exp(Pi*n/sqrt(3)), where c = A258942 = 8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / Gamma(1/6)^3 = 1.09786330972731096865822482325074133091288... . - Vaclav Kotesovec, Nov 14 2015
Expansion of q^(-1/6)* eta[q]*eta[q^9]^2/(eta[q]^3 + 9*eta[q^9]^3) in powers of q. - G. C. Greubel, Jun 22 2018
Expansion of q^(-1/6) * 3^(-1/2) * sqrt(b(q)*c(q))/a(q) in powers of q where a(), b(), c() are cubic AGM functions. - Michael Somos, Nov 02 2019

A258942 Decimal expansion of a constant related to A258941.

Original entry on oeis.org

1, 0, 9, 7, 8, 6, 3, 3, 0, 9, 7, 2, 7, 3, 1, 0, 9, 6, 8, 6, 5, 8, 2, 2, 4, 8, 2, 3, 2, 5, 0, 7, 4, 1, 3, 3, 0, 9, 1, 2, 8, 8, 0, 8, 7, 3, 8, 9, 3, 6, 3, 0, 4, 5, 7, 9, 1, 6, 4, 9, 8, 2, 5, 9, 9, 4, 0, 9, 2, 7, 3, 8, 5, 2, 4, 9, 4, 3, 2, 4, 8, 1, 7, 1, 8, 3, 6, 1, 6, 0, 2, 3, 7, 2, 1, 4, 3, 1, 0, 1, 7, 7, 4, 8, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 07 2015

Keywords

Examples

			1.09786330972731096865822482325074133091288087389363045791649825994...
		

Crossrefs

Programs

  • Maple
    evalf(8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / GAMMA(1/6)^3, 120); # Vaclav Kotesovec, Nov 14 2015
  • Mathematica
    RealDigits[8*E^(Pi/(6*Sqrt[3]))*Pi^(5/2)/Gamma[1/6]^3, 10, 105][[1]] (* Vaclav Kotesovec, Nov 14 2015 *)

Formula

Equals limit n->infinity A258941(n) * (-1)^n / exp(Pi*n/sqrt(3)).
Equals 8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / Gamma(1/6)^3. - Vaclav Kotesovec, Nov 14 2015

A328785 Expansion of q^(-1/3) * (1/3) * b(q)*c(q)/a(q)^2 in powers of q where a(), b(), c() are cubic AGM functions.

Original entry on oeis.org

1, -14, 131, -1080, 8333, -61580, 441893, -3104136, 21454675, -146408362, 988876484, -6622729128, 44039891747, -291092877360, 1914072126008, -12529113820200, 81687913345362, -530724605541430, 3437326269162720, -22199991545327616, 143016156285625823
Offset: 0

Views

Author

Michael Somos, Nov 02 2019

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Convolution square of A258941. Convolution inverse of A058092 with more information there.

Examples

			G.f. = 1 - 14*x + 131*x^2 - 1080*x^3 + 8333*x^4 - 61580*x^5 + ...
G.f. = q - 14*q^4 + 131*q^7 - 1080*q^10 + 8333*q^13 - 61580*q^16 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, 1998.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[x]^2 QPochhammer[x^3]^4 / (QPochhammer[x]^3 + 9 x QPochhammer[x^9]^3)^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); A = ((eta(x + A) * eta(x^3 + A)) / (eta(x^2 + A) * eta(x^6 + A)))^2; polcoeff( 1 / (A + x * 16/A^2), n))};

Formula

Coefficients of 1/3 of power series in equation (13.23), page 179, [Berndt 1998]
A051273(n) = 3*a(n).
a(n) ~ (-1)^n * 64 * Pi^5 * n * exp(Pi*(3*n+1)/3^(3/2)) / Gamma(1/6)^6. - Vaclav Kotesovec, Nov 08 2019
Showing 1-4 of 4 results.