A258942 Decimal expansion of a constant related to A258941.
1, 0, 9, 7, 8, 6, 3, 3, 0, 9, 7, 2, 7, 3, 1, 0, 9, 6, 8, 6, 5, 8, 2, 2, 4, 8, 2, 3, 2, 5, 0, 7, 4, 1, 3, 3, 0, 9, 1, 2, 8, 8, 0, 8, 7, 3, 8, 9, 3, 6, 3, 0, 4, 5, 7, 9, 1, 6, 4, 9, 8, 2, 5, 9, 9, 4, 0, 9, 2, 7, 3, 8, 5, 2, 4, 9, 4, 3, 2, 4, 8, 1, 7, 1, 8, 3, 6, 1, 6, 0, 2, 3, 7, 2, 1, 4, 3, 1, 0, 1, 7, 7, 4, 8, 1
Offset: 1
Examples
1.09786330972731096865822482325074133091288087389363045791649825994...
Programs
-
Maple
evalf(8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / GAMMA(1/6)^3, 120); # Vaclav Kotesovec, Nov 14 2015
-
Mathematica
RealDigits[8*E^(Pi/(6*Sqrt[3]))*Pi^(5/2)/Gamma[1/6]^3, 10, 105][[1]] (* Vaclav Kotesovec, Nov 14 2015 *)
Formula
Equals limit n->infinity A258941(n) * (-1)^n / exp(Pi*n/sqrt(3)).
Equals 8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / Gamma(1/6)^3. - Vaclav Kotesovec, Nov 14 2015
Comments