cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051275 Expansion of (1+x^2)/((1-x^2)*(1-x^3)).

Original entry on oeis.org

1, 0, 2, 1, 2, 2, 3, 2, 4, 3, 4, 4, 5, 4, 6, 5, 6, 6, 7, 6, 8, 7, 8, 8, 9, 8, 10, 9, 10, 10, 11, 10, 12, 11, 12, 12, 13, 12, 14, 13, 14, 14, 15, 14, 16, 15, 16, 16, 17, 16, 18, 17, 18, 18, 19, 18, 20, 19, 20, 20, 21, 20, 22, 21, 22, 22, 23, 22, 24, 23, 24, 24
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 12 ).
Diagonal sums of A117567. - Paul Barry, Mar 29 2006
First differences of A156040. - Bob Selcoe, Feb 07 2014
Also first difference of diagonal sums of the triangle formed by rows T(2,k) k=0,1...,2m of ascending m-nomial triangles (see A004737). - Bob Selcoe, Feb 07 2014

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x^2)/((1-x^2)(1-x^3)),{x,0,100}],x] (* or *) LinearRecurrence[{0,1,1,0,-1},{1,0,2,1,2},100] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    Vec((1+x^2)/((1-x^2)*(1-x^3))+ O(x^80)) \\ Michel Marcus, Nov 26 2019

Formula

From Paul Barry, Mar 29 2006: (Start)
a(n) = a(n-2) + a(n-3) - a(n-5);
a(n) = cos(2*Pi*n/3 + Pi/3)/3 - sqrt(3)*sin(2*Pi*n/3 + Pi/3)/9 + (-1)^n/2 + (2n+3)/6;
a(n) = Sum_{k=0..floor(n/2)} F(L((n-2k+2)/3)) where L(j/p) is the Legendre symbol of j and p. (End)
a(n) = 2*floor(n/2) + floor((n+4)/3) - n. - Ridouane Oudra, Nov 26 2019