A051282 2-adic valuation of A025487: largest k such that 2^k divides A025487(n), where A025487 gives products of primorials.
0, 1, 2, 1, 3, 2, 4, 3, 1, 5, 2, 4, 2, 6, 3, 5, 3, 7, 4, 2, 6, 1, 3, 4, 8, 5, 3, 7, 2, 4, 5, 9, 6, 4, 8, 3, 5, 2, 6, 10, 3, 7, 2, 4, 5, 9, 4, 6, 3, 7, 11, 4, 8, 1, 3, 5, 6, 10, 5, 7, 4, 8, 12, 5, 9, 2, 4, 6, 3, 7, 11, 2, 4, 6, 8, 5, 3, 9, 5, 13, 6, 10, 3, 5, 7, 4, 8, 12, 3, 5, 7, 9, 2, 6, 4, 10, 6, 14, 7, 11, 4, 6, 8, 5, 9, 13, 4, 6, 8, 3, 10, 3, 7, 1, 5, 11, 7, 4
Offset: 1
Examples
a(8) = 3 because A025487(8) = 24 and 2^3 divides 24.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a051282 = a007814 . a025487 -- Reinhard Zumkeller, Apr 06 2013
-
Mathematica
max = 40000; A025487 = {1}; lpe = {}; Do[ pe = Sort[ FactorInteger[n][[All, 2]]]; If[FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[A025487, n]], {n, 2, max}]; a[n_] := FactorInteger[ A025487[[n]] ][[1, 2]]; a[1] = 0; Table[a[n], {n, 1, Length[A025487]}] (* Jean-François Alcover, Jun 14 2012, after Robert G. Wilson v *)
-
PARI
isA025487(n)=my(k=valuation(n, 2), t); n>>=k; forprime(p=3, default(primelimit), t=valuation(n, p); if(t>k, return(0), k=t); if(k, n/=p^k, return(n==1))) [valuation(n,2) | n <- [1..1000], isA025487(n)] \\ Or, for older versions: apply(n->valuation(n,2), select(isA025487, [1..1000])) \\ Charles R Greathouse IV, Nov 07 2014
Formula
Extensions
More terms from Naohiro Nomoto, Mar 11 2001
Comments