A051288 Triangle read by rows: T(n,k) = number of paths of n upsteps U and n downsteps D that contain k UUDs.
1, 2, 4, 2, 8, 12, 16, 48, 6, 32, 160, 60, 64, 480, 360, 20, 128, 1344, 1680, 280, 256, 3584, 6720, 2240, 70, 512, 9216, 24192, 13440, 1260, 1024, 23040, 80640, 67200, 12600, 252, 2048, 56320, 253440, 295680, 92400, 5544, 4096, 135168, 760320
Offset: 0
Examples
Table begins n | k=0 1 2 3 --+------------------- 0 | 1 1 | 2 2 | 4 2 3 | 8 12 4 | 16 48 6 5 | 32 160 60 6 | 64 480 360 20 7 | 128 1344 1680 280 ... a(2,1)=2 because UUDD, DUUD each have one UUD.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2600
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Rui Duarte and António Guedes de Oliveira, A Famous Identity of Hajós in Terms of Sets, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.1.
- S. Elizalde, E. Deutsch, The degree of asymmetry of a sequence, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7 eq (10)
- Aristidis Sapounakis, Panagiotis Tsikouras, Ioannis Tasoulas, and Kostas Manes, Strings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property, Electr. J. Combinatorics, 19 (2012), #P2.
- Stanislav Sykora, Triangle T(n,k) for rows n = 0..100
- Stanislav Sykora, p-Quantum Transitions and a Combinatorial Identity, Stan's Library II, 2007, Identity (1) for p=0.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Hans J. H. Tuenter, Combinatorial Analysis of a Classic Card Trick, Mathematics Magazine, 97(5):551-558, December 2024.
Crossrefs
Programs
-
Mathematica
Table[Binomial[n, 2k]2^(n-2k)Binomial[2k, k], {n, 0, 15}, {k, 0, n/2}]
Formula
T(n, k) = binomial(n, 2*k)*2^(n-2*k)*binomial(2*k, k).
G.f.: (1-4*x+4*x^2*(1-y))^(-1/2) = Sum_{n>=0, k>=0} a(n, k)*x^n*y^k.
Extensions
Additional comments from David Callan, Aug 28 2004
Comments