cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A051343 Number of ways of writing n as a sum of 3 nonnegative cubes (counted naively).

Original entry on oeis.org

1, 3, 3, 1, 0, 0, 0, 0, 3, 6, 3, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 6, 3, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 3, 0, 3, 6, 3, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A051344.
Sums of k cubes, number of ways of writing n as, for k=1..9: A010057, A173677, A051343, A173678, A173679, A173680, A173676, A173681, A173682.

Programs

  • Maple
    series(add(x^(n^3), n=0..10)^3,x,1000);
  • PARI
    first(n)=my(s=vector(n+1)); for(k=0,sqrtnint(n,3), s[k^3+1]=1); Vec(Ser(s,,n+1)^3) \\ Charles R Greathouse IV, Sep 16 2016

A340977 Number of ways to write n as an ordered sum of 4 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 4, 0, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 12, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 24
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..100);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^4.

A340978 Number of ways to write n as an ordered sum of 5 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 20, 0, 1, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 10, 0, 5, 0, 0, 0, 0, 30, 0, 0, 0, 5, 0, 0, 30, 0, 0, 0, 20, 0, 0, 10, 0, 0, 0, 30, 10, 0, 0, 0, 0, 0, 20, 20, 0, 0, 0, 20, 0, 5, 10
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..97);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 97; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^5.

A340979 Number of ways to write n as an ordered sum of 6 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 6, 0, 15, 0, 0, 0, 0, 30, 0, 6, 0, 0, 0, 0, 60, 0, 1, 0, 0, 0, 0, 60, 0, 0, 0, 0, 15, 0, 30, 0, 0, 0, 0, 60, 0, 6, 0, 6, 0, 0, 90, 0, 0, 0, 30, 0, 0, 60, 0, 0, 0, 60, 20, 0, 15, 0, 0, 0, 60, 60, 0, 0, 0, 30, 0, 30, 60
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..98);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 98; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^6, {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^6.

A340980 Number of ways to write n as an ordered sum of 7 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 7, 0, 35, 0, 0, 0, 0, 42, 0, 21, 0, 0, 0, 0, 105, 0, 7, 0, 0, 0, 0, 140, 0, 1, 0, 0, 21, 0, 105, 0, 0, 0, 0, 105, 0, 42, 0, 7, 0, 0, 210, 0, 7, 0, 42, 0, 0, 210, 0, 0, 0, 105, 35, 0, 105, 0, 0, 0, 140, 140, 0, 21, 0, 42
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..96);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 96; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^7, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^7.

A340981 Number of ways to write n as an ordered sum of 8 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 8, 0, 70, 0, 0, 0, 0, 56, 0, 56, 0, 0, 0, 0, 168, 0, 28, 0, 0, 0, 0, 280, 0, 8, 0, 0, 28, 0, 280, 0, 1, 0, 0, 168, 0, 168, 0, 8, 0, 0, 420, 0, 56, 0, 56, 0, 0, 560, 0, 8, 0, 168, 56, 0, 420, 0, 0, 0, 280, 280, 0, 168
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..95);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 95; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^8.

A340982 Number of ways to write n as an ordered sum of 9 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 9, 0, 126, 0, 0, 0, 0, 72, 0, 126, 0, 0, 0, 0, 252, 0, 84, 0, 0, 0, 0, 504, 0, 36, 0, 0, 36, 0, 630, 0, 9, 0, 0, 252, 0, 504, 0, 10, 0, 0, 756, 0, 252, 0, 72, 0, 0, 1260, 0, 72, 0, 252, 84, 0, 1260, 0, 9, 0, 504, 504
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..94);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 94; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^9, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^9.

A340983 Number of ways to write n as an ordered sum of 10 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 10, 0, 210, 0, 0, 0, 0, 90, 0, 252, 0, 0, 0, 0, 360, 0, 210, 0, 0, 0, 0, 840, 0, 120, 0, 0, 45, 0, 1260, 0, 45, 0, 0, 360, 0, 1260, 0, 20, 0, 0, 1260, 0, 840, 0, 91, 0, 0, 2520, 0, 360, 0, 360, 120, 0, 3150, 0, 90
Offset: 10

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 10):
    seq(a(n), n=10..92);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^10, {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^10.

A347715 Number of compositions (ordered partitions) of n into at most 3 cubes.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 3, 0, 1, 2, 3, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 3, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2021

Keywords

Crossrefs

A303485 a(n) = [x^(n^3)] (1/(1 - x))*(Sum_{k>=1} x^(k^3))^n.

Original entry on oeis.org

1, 1, 1, 8, 66, 512, 5269, 57459, 711742, 9610222, 139735699, 2183555015, 36543300668, 649320343729, 12174674648730, 240360451018461, 4975239937954534, 107600744797471150, 2426579187889852885, 56901290353169050995, 1384258146777832889697
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Comments

Number of positive solutions to (x_1)^3 + (x_2)^3 + ... + (x_n)^3 <= n^3.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[SeriesCoefficient[1/(1 - x) Sum[x^k^3, {k, 1, n}]^n, {x, 0, n^3}], {n, 20}]]
Showing 1-10 of 10 results.