cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A051344 Number of ways of writing n as a sum of 3 positive cubes (counted naively).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    series(add(x^(n^3), n=1..10)^3,x,1000);

A340977 Number of ways to write n as an ordered sum of 4 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 4, 0, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 12, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 24
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..100);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^4.

A340978 Number of ways to write n as an ordered sum of 5 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 20, 0, 1, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 10, 0, 5, 0, 0, 0, 0, 30, 0, 0, 0, 5, 0, 0, 30, 0, 0, 0, 20, 0, 0, 10, 0, 0, 0, 30, 10, 0, 0, 0, 0, 0, 20, 20, 0, 0, 0, 20, 0, 5, 10
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..97);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 97; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^5.

A340979 Number of ways to write n as an ordered sum of 6 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 6, 0, 15, 0, 0, 0, 0, 30, 0, 6, 0, 0, 0, 0, 60, 0, 1, 0, 0, 0, 0, 60, 0, 0, 0, 0, 15, 0, 30, 0, 0, 0, 0, 60, 0, 6, 0, 6, 0, 0, 90, 0, 0, 0, 30, 0, 0, 60, 0, 0, 0, 60, 20, 0, 15, 0, 0, 0, 60, 60, 0, 0, 0, 30, 0, 30, 60
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..98);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 98; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^6, {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^6.

A340981 Number of ways to write n as an ordered sum of 8 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 8, 0, 70, 0, 0, 0, 0, 56, 0, 56, 0, 0, 0, 0, 168, 0, 28, 0, 0, 0, 0, 280, 0, 8, 0, 0, 28, 0, 280, 0, 1, 0, 0, 168, 0, 168, 0, 8, 0, 0, 420, 0, 56, 0, 56, 0, 0, 560, 0, 8, 0, 168, 56, 0, 420, 0, 0, 0, 280, 280, 0, 168
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..95);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 95; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^8.

A340982 Number of ways to write n as an ordered sum of 9 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 9, 0, 126, 0, 0, 0, 0, 72, 0, 126, 0, 0, 0, 0, 252, 0, 84, 0, 0, 0, 0, 504, 0, 36, 0, 0, 36, 0, 630, 0, 9, 0, 0, 252, 0, 504, 0, 10, 0, 0, 756, 0, 252, 0, 72, 0, 0, 1260, 0, 72, 0, 252, 84, 0, 1260, 0, 9, 0, 504, 504
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..94);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 94; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^9, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^9.

A340983 Number of ways to write n as an ordered sum of 10 positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 10, 0, 210, 0, 0, 0, 0, 90, 0, 252, 0, 0, 0, 0, 360, 0, 210, 0, 0, 0, 0, 840, 0, 120, 0, 0, 45, 0, 1260, 0, 45, 0, 0, 360, 0, 1260, 0, 20, 0, 0, 1260, 0, 840, 0, 91, 0, 0, 2520, 0, 360, 0, 360, 120, 0, 3150, 0, 90
Offset: 10

Views

Author

Ilya Gutkovskiy, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^3), j=1..iroot(n, 3))))
        end:
    a:= n-> b(n, 10):
    seq(a(n), n=10..92);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]^10, {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: (Sum_{k>=1} x^(k^3))^10.
Showing 1-7 of 7 results.