cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051375 Number of Boolean functions of n variables and rank 3 from Post class F(5,inf).

Original entry on oeis.org

0, 0, 9, 66, 345, 1590, 6909, 29106, 120465, 493230, 2005509, 8116746, 32744985, 131801670, 529647309, 2125861986, 8525167905, 34165634910, 136857036309, 548010848826, 2193789933225, 8780396200950, 35137287916509
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Cf. A036240.

Programs

  • Magma
    [(4^n - 3^n - 3*2^n + 5)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(4^n - 3^n - 3*2^n + 5)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((4^n - 3^n - 3*2^n + 5)/2, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = A036239(n) - A000918(n).
a(n) = (4^n - 3^n - 3*2^n + 5)/2.
a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*C(2^(n-j)-1, k-1) (with k=3).
Also: 1/(k-1)!*Sum(s(k, j)*(2^((j-1)*n)-(2^(j-1)-1)^n), j=1..k), where s(k, j) are Stirling numbers of the first kind (with k=3).
From Colin Barker, Jun 25 2012: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4).
G.f.: 3*x^3*(3-8*x)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). (End)

Extensions

More terms from James Sellers