cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051376 Number of Boolean functions of n variables and rank 4 from Post class F(5,inf).

Original entry on oeis.org

0, 0, 3, 134, 1935, 20830, 198303, 1776894, 15402495, 130890110, 1098087903, 9130126654, 75412301055, 619706950590, 5071742430303, 41369422556414, 336511166127615, 2730929153686270, 22119108433729503, 178853777028618174
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Crossrefs

Programs

  • Magma
    [(8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6: n in [1..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=1,50, print1((8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = A036240(n) - A036239(n) + A000918(n).
a(n) = (8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6.
a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*C(2^(n-j)-1, k-1), where k=4.
Also: 1/(k-1)!*Sum_{j=1..k} s(k, j)*(2^((j-1)*n)-(2^(j-1)-1)^n), where s(k, j) are Stirling numbers of the first kind (and k=4).
G.f.: x^3*(3 + 59*x - 692*x^2 + 1344*x^3) / ( (x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(8*x-1)*(7*x-1) ). - R. J. Mathar, Jun 13 2013

Extensions

More terms from James Sellers