A051381 Number of Boolean functions of n variables from Post class F(5,inf).
1, 3, 19, 471, 162631, 12884412819, 64563604212887416603, 1361129467683753853595244012815395920687, 521064401567922879406069432539095585333589848390805645835993148352662477920015
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..12
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- S. Spasovski and A. M. Bogdanova, Optimization of the Polynomial Greedy Solution for the Set Covering Problem, 2013, 10th Conference for Informatics and Information Technology (CIIT 2013).
- Index entries for sequences related to Boolean functions
Programs
-
Mathematica
Table[Sum[(-1)^(j + 1)*Binomial[n, j]*2^(2^(n - j) - 1) , {j, 1, n}], {n, 1, 5}] (* G. C. Greubel, Oct 08 2017 *)
Formula
a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*2^(2^(n-j)-1).
Extensions
More terms from James Sellers