cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051424 Number of partitions of n into pairwise relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 10, 12, 15, 18, 23, 27, 33, 38, 43, 51, 60, 70, 81, 92, 102, 116, 134, 153, 171, 191, 211, 236, 266, 301, 335, 367, 399, 442, 485, 542, 598, 649, 704, 771, 849, 936, 1023, 1103, 1185, 1282, 1407, 1535, 1662, 1790, 1917, 2063, 2245, 2436
Offset: 0

Views

Author

Keywords

Examples

			a(4) = 4 since all partitions of 4 consist of relatively prime numbers except 2+2.
The a(6) = 7 partitions with pairwise coprime parts: (111111), (21111), (3111), (321), (411), (51), (6). - _Gus Wiseman_, Apr 14 2018
		

Crossrefs

Number of partitions of n into relatively prime parts = A000837.
Row sums of A282749.

Programs

  • Haskell
    a051424 = length . filter f . partitions where
       f [] = True
       f (p:ps) = (all (== 1) $ map (gcd p) ps) && f ps
       partitions n = ps 1 n where
         ps x 0 = [[]]
         ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    with(numtheory):
    b:= proc(n, i, s) option remember; local f;
          if n=0 or i=1 then 1
        elif i<2 then 0
        else f:= factorset(i);
             b(n, i-1, select(x->is(xis(x b(n, n, {}):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 14 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i < 2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, # < i &]] + If[i <= n && f ~Intersection~ s == {}, b[n-i, i-1, Select[s ~Union~ f, # < i &]], 0]]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 54}] (* Jean-François Alcover, Oct 03 2013, translated from Maple, after Alois P. Heinz *)

Formula

log a(n) ~ (2*Pi/sqrt(6)) sqrt(n/log n). - Eric M. Schmidt, Jul 04 2013
Apparently no formula or recurrence is known. - N. J. A. Sloane, Mar 05 2017

Extensions

More precise definition from Vladeta Jovovic, Dec 11 2004