A051424 Number of partitions of n into pairwise relatively prime parts.
1, 1, 2, 3, 4, 6, 7, 10, 12, 15, 18, 23, 27, 33, 38, 43, 51, 60, 70, 81, 92, 102, 116, 134, 153, 171, 191, 211, 236, 266, 301, 335, 367, 399, 442, 485, 542, 598, 649, 704, 771, 849, 936, 1023, 1103, 1185, 1282, 1407, 1535, 1662, 1790, 1917, 2063, 2245, 2436
Offset: 0
Keywords
Examples
a(4) = 4 since all partitions of 4 consist of relatively prime numbers except 2+2. The a(6) = 7 partitions with pairwise coprime parts: (111111), (21111), (3111), (321), (411), (51), (6). - _Gus Wiseman_, Apr 14 2018
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..750 (terms 0..400 from Alois P. Heinz)
- Eric Schmutz, Partitions whose parts are pairwise relatively prime, Discrete Math. 81(1) (1990), 87-89.
- Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44(4) (2006), 316-323.
Crossrefs
Programs
-
Haskell
a051424 = length . filter f . partitions where f [] = True f (p:ps) = (all (== 1) $ map (gcd p) ps) && f ps partitions n = ps 1 n where ps x 0 = [[]] ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)] -- Reinhard Zumkeller, Dec 16 2013
-
Maple
with(numtheory): b:= proc(n, i, s) option remember; local f; if n=0 or i=1 then 1 elif i<2 then 0 else f:= factorset(i); b(n, i-1, select(x->is(xis(x b(n, n, {}): seq(a(n), n=0..80); # Alois P. Heinz, Mar 14 2012
-
Mathematica
b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i < 2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, # < i &]] + If[i <= n && f ~Intersection~ s == {}, b[n-i, i-1, Select[s ~Union~ f, # < i &]], 0]]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 54}] (* Jean-François Alcover, Oct 03 2013, translated from Maple, after Alois P. Heinz *)
Formula
log a(n) ~ (2*Pi/sqrt(6)) sqrt(n/log n). - Eric M. Schmidt, Jul 04 2013
Apparently no formula or recurrence is known. - N. J. A. Sloane, Mar 05 2017
Extensions
More precise definition from Vladeta Jovovic, Dec 11 2004