cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051449 Number of fibered rational knots with n crossings.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 10, 16, 25, 40, 62, 101, 159, 257, 410, 663, 1062, 1719, 2764, 4472, 7209, 11664, 18828, 30465, 49221, 79641, 128746, 208315, 336872, 545071, 881638, 1426520, 2307665, 3733880, 6040746, 9774133, 15813587, 25586921, 41398418
Offset: 3

Views

Author

Alexander Stoimenow (stoimeno(AT)math.toronto.edu)

Keywords

Examples

			a(7)=3 because there are 3 fibered rational knots with 7 crossings: 7_1, 7_6 and 7_7 (in Alexander-Briggs notation).
		

Programs

  • Mathematica
    f[x_] = -(x+1)^2*(x^3+x-1) / ((x^2+x-1)*(x^2+x+1)*(x^4+x^2-1)); CoefficientList[ Series[f[x], {x, 0, 39}], x]; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 21 2011 *)
    LinearRecurrence[{0,2,2,1,-2,-2,-2,-1},{1,1,1,2,3,4,7,10},40] (* Harvey P. Dale, Dec 27 2015 *)

Formula

G.f.: (x^2/2)*((-x-x^2)/(x^4+2x^3+x^2-1) + (-x-x^2)/(x^4+x^2-1)).
G.f.: -x^3*(x^3+x-1)*(1+x)^2 / ( (1+x+x^2)*(x^2+x-1)*(x^4+x^2-1) ).

Extensions

More terms from James Sellers