cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051466 Largest product of primorials less than A025487(n) that divides A025487(n).

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 12, 6, 16, 12, 24, 30, 32, 36, 48, 60, 64, 72, 60, 96, 30, 72, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 180, 480, 512, 360, 576, 420, 432, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 210, 1260, 1296, 1440
Offset: 2

Views

Author

Keywords

Comments

Note that A036041(A025487(n)) = A036041(a(n)) + 1 since A025487(n)/a(n) is prime.

Examples

			A025487 = 1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, ...; a(n)= 1, 2, 2, 4, 6, 8, 12, 6, 16, 12, ... . (12 divides 36, but 16 through 32 do not.)
A025487(38) = 900 = 5#*5#. The largest product of primorials that divides this number will be 5#*3# = 180 = a(38). - _Charlie Neder_, Oct 20 2018
		

Crossrefs

Programs

  • Haskell
    a051466 n = a051466_list !! (n-2)
    a051466_list = f [head a025487_list] $ tail a025487_list where
       f us (v:vs) = fromJust (find (\x -> mod v x == 0) us) : f (v : us) vs
    -- Reinhard Zumkeller, Jul 17 2013
  • Mathematica
    (* First, load second program at A025487, then: *)
    With[{s = Union@ Flatten@ f[5]}, Table[SelectFirst[Reverse@ Take[s, n - 1], Mod[s[[n]], #] == 0 &], {n, 2, Length@ s}]] (* Michael De Vlieger, Dec 27 2019 *)

Formula

a(n) = A025487(n) / p, where p is the largest prime such that p^A051282(n) | A025487(n). - Charlie Neder, Oct 12 2018

Extensions

Offset updated by Matthew Vandermast, Jul 03 2012
Name edited by Charlie Neder, Oct 20 2018
Name clarified by Antti Karttunen, Dec 24 2019