cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051473 a(n) = A028321(n)/2.

Original entry on oeis.org

3, 4, 18, 5, 23, 6, 189, 102, 420, 291, 41, 7, 711, 48, 1551, 605, 8, 281, 4433, 2574, 72, 9, 7007, 1456, 81, 10, 39039, 27924, 15834, 7014, 2370, 588, 82654, 66963, 43758, 22848, 9384, 2958, 111, 11, 149617, 110721, 66606, 32232, 12342, 122, 314925
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    T:= func< n, k | n le 1 select 1 else Binomial(n, k) + 3*Binomial(n-2, k-1) >; // T = A028323
    b:=[T(n, k): k in [1+Floor(n/2)..n], n in [0..100]];
    [b[n]/2: n in [1..150] | (b[n] mod 2) eq 0]; // G. C. Greubel, Jul 02 2024
    
  • Mathematica
    b:= Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k, Floor[n/2]+1,n}]//Flatten;
    Select[b, EvenQ]/2 (* G. C. Greubel, Jul 02 2024 *)
  • SageMath
    def A028323(n, k): return binomial(n, k) + 3*binomial(n-2, k-1) - 3*int(n==0)
    b=flatten([[A028323(n, k) for k in range(1+(n//2),n+1)] for n in range(101)])
    [b[n]/2 for n in (1..150) if b[n]%2==0] # G. C. Greubel, Jul 02 2024