cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051488 Numbers k such that phi(k) < phi(k - phi(k)).

Original entry on oeis.org

30, 60, 66, 120, 132, 138, 174, 210, 240, 246, 264, 276, 318, 330, 348, 420, 480, 492, 498, 510, 528, 534, 552, 630, 636, 660, 678, 690, 696, 786, 840, 870, 910, 960, 984, 996, 1020, 1038, 1056, 1068, 1074, 1104, 1122, 1146, 1260, 1272, 1320, 1330, 1356
Offset: 1

Views

Author

Keywords

Comments

If p is a Sophie Germain prime greater than 3 and n is a natural number then 2^n*3*p is in the sequence. That is because if m = 2^n*3*p then phi(m) = 2^n*(p-1) and phi(m - phi(m)) = phi(2^n*3*p - 2^n*(p-1)) = phi(2^n*(2p+1)) = 2^n*p so phi(m) < phi(m-phi(m)) and m is in the sequence. - Farideh Firoozbakht, Jun 19 2005
Erdős (1980) proposed the problem to prove that this sequence is infinite and has an asymptotic density 0. Grytczuk et al. (2001) proved that this sequence is infinite with an upper asymptotic density < 0.45637. - Amiram Eldar, May 22 2021

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B42, p. 150.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 209.

Crossrefs

Programs

  • Haskell
    a051488 n = a051488_list !! (n-1)
    a051488_list = [x | x <- [2..], let t = a000010 x, t < a000010 (x - t)]
    -- Reinhard Zumkeller, Apr 12 2014
  • Mathematica
    Select[Range[1360], EulerPhi[ # ] < EulerPhi[ # - EulerPhi[ # ]] &] (* Farideh Firoozbakht, Jun 19 2005 *)

Extensions

More terms from James Sellers