cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051532 The abelian orders (or abelian numbers): numbers m such that every group of order m is abelian.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 119, 121, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 153, 157, 159, 161
Offset: 1

Views

Author

Des MacHale, Dec 11 1999

Keywords

Comments

Except for a(2)=2 and a(4)=4, all of the terms in the sequence are odd. This is because of the existence of a non-abelian dihedral group of order 2m for each m > 2.
Cubefree terms of A056867; A212793(a(n)) = 1. - Reinhard Zumkeller, Jun 28 2013
See similar comment with "squarefree terms" in A003277 (Donald J. McCarthy link). - Bernard Schott, Feb 20 2023

Examples

			a(4) = 4 because every group of order 4 is abelian.
These two abelian groups of order 4 are the cyclic group C_4 and the Klein four-group = C_2 X C_2, the smallest non-cyclic abelian group. - _Bernard Schott_, Feb 21 2023
		

References

  • W. R. Scott, Group Theory, Dover, 1987, page 217.

Crossrefs

Subsequence of A056867 and supersequence of A003277.
Complement of A060652.
Intersection of A004709 and A056867.

Programs

  • Haskell
    a051532 n = a051532_list !! (n-1)
    a051532_list = filter ((== 1) . a212793) a056867_list
    -- Reinhard Zumkeller, Jun 28 2013
    
  • Mathematica
    okQ[n_] := Module[{f, lf, p, e, v}, f = FactorInteger[n]; lf = Length[f]; p = f[[All, 1]]; e = f[[All, 2]]; If[AnyTrue[e, # > 2&], Return[False]]; v = p^e; For[i = 1, i <= lf, i++, For[j = i+1, j <= lf, j++, If[Mod[v[[i]], p[[j]]]==1 || Mod[v[[j]], p[[i]]]==1, Return[False]]]]; Return[True]];
    Select[Range[200], okQ] (* Jean-François Alcover, May 03 2012, after PARI, updated Jan 10 2020 *)
  • PARI
    is(n)=my(f=factor(n),v=vector(#f[,1])); for(i=1,#v, if(f[i,2]>2, return(0), v[i]=f[i,1]^f[i,2])); for(i=1,#v, for(j=i+1,#v, if(v[i]%f[j,1]==1 || v[j]%f[i,1]==1, return(0)))); 1 \\ Charles R Greathouse IV, Feb 13 2011
    
  • Python
    from sympy import factorint
    def ok(n):
        if n == 1: return True
        f = factorint(n)
        p, e = f.keys(), f.values()
        if max(e) >= 3: return False
        return all((pi**k)%pj!=1 for pi in p for pj in p if pj!=pi for k in range(1, f[pi]+1))
    print([k for k in range(1, 162) if ok(k)]) # Michael S. Branicky, Feb 20 2023

Formula

m must be cubefree and its prime divisors must satisfy certain congruences.
Let the prime factorization of m be p1^e1 * ... * pr^er. Then m is in this sequence if ei < 3 for all i and pi^k is not congruent to 1 (mod pj) for all i and j and 1 <= k <= ei. - T. D. Noe, Mar 25 2007