cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A161751 Digital root of Abelian numbers (A051532).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 2, 4, 6, 8, 1, 5, 7, 2, 4, 6, 8, 1, 5, 7, 9, 2, 4, 6, 8, 5, 7, 2, 4, 6, 8, 1, 5, 7, 2, 4, 6, 8, 1, 5, 7, 9, 2, 4, 8, 1, 5, 7, 2, 4, 6, 1, 5, 7, 2, 4, 6, 8, 1, 5, 7, 9, 4, 6, 8
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 17 2009

Keywords

Comments

It is interesting to observe that it is difficult to find 3 as the digital root.
This is because if a term of A051532 is congruent to 3 (mod 9) all other prime power divisors of the number must be 2 (mod 3). The first few indexes n with a(n) = 3 are 3, 99, 131, 164, 211, 261, 293, 327, 351, 424, 450, 482, 491, .... - Charles R Greathouse IV, Feb 13 2011

Examples

			161 is an Abelian number whose digital root is 8.
		

Crossrefs

Cf. A051532.

A000688 Number of Abelian groups of order n; number of factorizations of n into prime powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Equivalently, number of Abelian groups with n conjugacy classes. - Michael Somos, Aug 10 2010
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - Franklin T. Adams-Watters, Oct 20 2006
Range is A033637.
a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - Wolfdieter Lang, Sep 09 2012
Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - L. Edson Jeffery, Nov 29 2012
Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - R. J. Mathar, Nov 05 2016
See A060689 for the number of non-abelian groups of order n. - M. F. Hasler, Oct 24 2017
Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - Charles R Greathouse IV, Jul 14 2024

Examples

			a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
From _Wolfdieter Lang_, Jul 22 2011: (Start)
a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
(End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.

Crossrefs

Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).

Programs

  • Haskell
    a000688 = product . map a000041 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,ans): od: # James Sellers, Dec 07 2000
  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* Robert G. Wilson v, Sep 22 2006 *)
    Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
  • PARI
    A000688(n)=local(f);f=factor(n);prod(i=1,matsize(f)[1],numbpart(f[i,2])) \\ Michael B. Porter, Feb 08 2010
    
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,numbpart(f[i])) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    from sympy import factorint, npartitions
    from math import prod
    def A000688(n): return prod(map(npartitions,factorint(n).values())) # Chai Wah Wu, Jan 14 2022
  • Sage
    def a(n):
        F=factor(n)
        return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
    # Ralf Stephan, Jun 21 2014
    

Formula

Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
a(2n) = A101872(n).
a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - Wolfdieter Lang, Jul 23 2011
In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - Marko Riedel, Oct 03 2014
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - Álvar Ibeas, Nov 05 2014
a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - R. J. Mathar, Nov 05 2016
A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = A000001(n) - A060689(n). - M. F. Hasler, Oct 24 2017
From Amiram Eldar, Nov 01 2020: (Start)
a(n) = a(A057521(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - Miles Englezou, Feb 17 2024
Inverse Moebius transform of A188585: a(n) = Sum_{d|n} A188585(d). - Amiram Eldar, Jun 10 2025

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A003277 Cyclic numbers: k such that k and phi(k) are relatively prime; also k such that there is just one group of order k, i.e., A000001(k) = 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 157, 159, 161, 163, 167, 173
Offset: 1

Views

Author

Keywords

Comments

Except for a(2)=2, all the terms in the sequence are odd. This is because of the existence of a non-cyclic dihedral group of order 2n for each n>1. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 09 2001
Also gcd(n, A051953(n)) = 1. - Labos Elemer
n such that x^n == 1 (mod n) has no solution 2 <= x <= n. - Benoit Cloitre, May 10 2002
There is only one group (the cyclic group of order n) whose order is n. - Gerard P. Michon, Jan 08 2008 [This is a 1947 result of Tibor Szele. - Charles R Greathouse IV, Nov 23 2011]
Any divisor of a Carmichael number (A002997) must be odd and cyclic. Conversely, G. P. Michon conjectured (c. 1980) that any odd cyclic number has at least one Carmichael multiple (if the conjecture is true, each of them has infinitely many such multiples). In 2007, Michon & Crump produced explicit Carmichael multiples of all odd cyclic numbers below 10000 (see link, cf. A253595). - Gerard P. Michon, Jan 08 2008
Numbers n such that phi(n)^phi(n) == 1 (mod n). - Michel Lagneau, Nov 18 2012
Contains A000040, and all members of A006094 except 6. - Robert Israel, Jul 08 2015
Number m such that n^n == r (mod m) is solvable for any r. - David W. Wilson, Oct 01 2015
Numbers m such that A074792(m) = m + 1. - Thomas Ordowski, Jul 16 2017
Squarefree terms of A056867 (see McCarthy link p. 592 and similar comment with "cubefree" in A051532). - Bernard Schott, Mar 24 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A051532. Intersection of A056867 and A005117.
Cf. A000010, A008966, A009195, A050384 (the same sequence but with the primes removed). Also A000001(a(n)) = 1.

Programs

  • Haskell
    import Data.List (elemIndices)
    a003277 n = a003277_list !! (n-1)
    a003277_list = map (+ 1) $ elemIndices 1 a009195_list
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [n: n in [1..200] | Gcd(n, EulerPhi(n)) eq 1]; // Vincenzo Librandi, Jul 09 2015
    
  • Maple
    select(t -> igcd(t, numtheory:-phi(t))=1, [$1..1000]); # Robert Israel, Jul 08 2015
  • Mathematica
    Select[Range[175], GCD[#, EulerPhi[#]] == 1 &] (* Jean-François Alcover, Apr 04 2011 *)
    Select[Range@175, FiniteGroupCount@# == 1 &] (* Robert G. Wilson v, Feb 16 2017 *)
    Select[Range[200],CoprimeQ[#,EulerPhi[#]]&] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    isA003277(n) = gcd(n,eulerphi(n))==1 \\ Michael B. Porter, Feb 21 2010
    
  • Sage
    # Compare A050384.
    def isPrimeTo(n, m): return gcd(n, m) == 1
    def isCyclic(n): return isPrimeTo(n, euler_phi(n))
    [n for n in (1..173) if isCyclic(n)] # Peter Luschny, Nov 14 2018

Formula

n = p_1*p_2*...*p_k (for some k >= 0), where the p_i are distinct primes and no p_j-1 is divisible by any p_i.
A000001(a(n)) = 1.
Erdős proved that a(n) ~ e^gamma n log log log n, where e^gamma is A073004. - Charles R Greathouse IV, Nov 23 2011
A000005(a(n)) = 2^k. - Carlos Eduardo Olivieri, Jul 07 2015
A008966(a(n)) = 1. - Bernard Schott, Mar 24 2022

Extensions

More terms from Christian G. Bower

A054395 Numbers m such that there are precisely 2 groups of order m.

Original entry on oeis.org

4, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 45, 46, 49, 55, 57, 58, 62, 74, 82, 86, 93, 94, 99, 105, 106, 111, 118, 121, 122, 129, 134, 142, 146, 153, 155, 158, 165, 166, 169, 175, 178, 183, 194, 195, 201, 202, 203, 205, 206, 207, 214, 218, 219, 226, 231, 237
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2000

Keywords

Comments

Givens characterizes this sequence, see Theorem 5. In particular, this sequence is ({n: A215935(n) = 1} INTERSECT A005117) UNION (A060687 INTERSECT A051532). - Charles R Greathouse IV, Aug 27 2012 [This is now A350586 UNION A350322. - Charles R Greathouse IV, Jan 08 2022]
Numbers m such that A000001(m) = 2. - Muniru A Asiru, Nov 03 2017

Examples

			For m = 4, the 2 groups of order 4 are C4, C2 x C2; for m = 6, the 2 groups of order 6 are S3, C6; and for m = 9, the 2 groups of order 9 are C9, C3 x C3 where C is the cyclic group of the stated order and S is the symmetric group of the stated degree. The symbol x means direct product. - _Muniru A Asiru_, Oct 24 2017
		

Crossrefs

Equals A350586 UNION A350322.
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: this sequence (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A054395 := Filtered([1..2015], n -> NumberSmallGroups(n) = 2); # Muniru A Asiru, Oct 24 2017
    
  • GAP
    IsGivensInt := function(n)
      local p, f; p := GcdInt(n, Phi(n));
      if not IsPrimeInt(p) then return false; fi;
      if n mod p^2 = 0 then return 1 = GcdInt(p+1, n); fi;
      f := PrimePowersInt(n);
      return 1 = Number([1..QuoInt(Length(f),2)], k->f[2*k-1] mod p = 1);
    end;;
    Filtered([1..240], IsGivensInt); # Gheorghe Coserea, Dec 04 2017
    
  • Mathematica
    Select[Range[240], FiniteGroupCount[#] == 2&]
    (* or: *)
    okQ[n_] := Module[{p, f}, p = GCD[n, EulerPhi[n]]; If[! PrimeQ[p], Return[False]]; If[Mod[n, p^2] == 0, Return[1 == GCD[p + 1, n]]]; f = FactorInteger[n]; 1 == Sum[Boole[Mod[f[[k, 1]], p] == 1], {k, 1, Length[f]}]];
    Select[Range[240], okQ] (* Jean-François Alcover, Dec 08 2017, after Gheorghe Coserea *)
  • PARI
    is(n) = {
      my(p=gcd(n,eulerphi(n)), f);
      if (!isprime(p), return(0));
      if (n%p^2 == 0, return(1 == gcd(p+1, n)));
      f = factor(n); 1 == sum(k=1, matsize(f)[1], f[k,1]%p==1);
    };
    seq(N) = {
      my(a = vector(N), k=0, n=1);
      while(k < N, if(is(n), a[k++]=n); n++); a;
    };
    seq(58) \\ Gheorghe Coserea, Dec 03 2017

Extensions

More terms from Christian G. Bower, May 25 2000

A056866 Orders of non-solvable groups, i.e., numbers that are not solvable numbers.

Original entry on oeis.org

60, 120, 168, 180, 240, 300, 336, 360, 420, 480, 504, 540, 600, 660, 672, 720, 780, 840, 900, 960, 1008, 1020, 1080, 1092, 1140, 1176, 1200, 1260, 1320, 1344, 1380, 1440, 1500, 1512, 1560, 1620, 1680, 1740, 1800, 1848, 1860, 1920, 1980, 2016, 2040
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Comments

A number is solvable if every group of that order is solvable.
This comment is about the three sequences A001034, A060793, A056866: The Feit-Thompson theorem says that a finite group with odd order is solvable, hence all numbers in this sequence are even. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001 [Corrected by Isaac Saffold, Aug 09 2021]
Insoluble group orders can be derived from A001034 (simple non-cyclic orders): k is an insoluble order iff k is a multiple of a simple non-cyclic order. - Des MacHale
All terms are divisible by 4 and either 3 or 5. - Charles R Greathouse IV, Sep 11 2012
Subsequence of A056868 and hence of A060652. - Charles R Greathouse IV, Apr 16 2015, updated Sep 11 2015
The primitive elements are A257146. Since the sum of the reciprocals of the terms of that sequence converges, this sequence has a natural density and so a(n) ~ k*n for some k (see, e.g., Erdős 1948). - Charles R Greathouse IV, Apr 17 2015
From Jianing Song, Apr 04 2022: (Start)
Burnside's p^a*q^b theorem says that a finite group whose order has at most 2 distinct prime factors is solvable, hence all terms have at least 3 distinct prime factors.
Terms not divisible by 12 are divisible by 320 and have at least 4 distinct prime factors (cf. A257391). (End)

Crossrefs

Subsequence of A000977 and A056868.

Programs

  • Mathematica
    ma[n_] := For[k = 1, True, k++, p = Prime[k]; m = 2^p*(2^(2*p) - 1); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; mb[n_] := For[k = 2, True, k++, p = Prime[k]; m = 3^p*((3^(2*p) - 1)/2); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; mc[n_] := For[k = 3, True, k++, p = Prime[k]; m = p*((p^2 - 1)/2); If[Mod[p^2 + 1, 5] == 0, If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]]; md[n_] := Mod[n, 2^4*3^3*13] == 0; me[n_] := For[k = 2, True, k++, p = Prime[k]; m = 2^(2*p)*(2^(2*p) + 1)*(2^p - 1); If[m > n, Return[False], If[Mod[n, m] == 0, Return[True]]]]; notSolvableQ[n_] := OddQ[n] || ma[n] || mb[n] || mc[n] || md[n] || me[n]; Select[ Range[3000], notSolvableQ] (* Jean-François Alcover, Jun 14 2012, from formula *)
  • PARI
    is(n)={
        if(n%5616==0,return(1));
        forprime(p=2,valuation(n,2),
            if(n%(4^p-1)==0, return(1))
        );
        forprime(p=3,valuation(n,3),
            if(n%(9^p\2)==0, return(1))
        );
        forprime(p=3,valuation(n,2)\2,
            if(n%((4^p+1)*(2^p-1))==0, return(1))
        );
        my(f=factor(n)[,1]);
        for(i=1,#f,
            if(f[i]>3 && f[i]%5>1 && f[i]%5<4 && n%(f[i]^2\2)==0, return(1))
        );
        0
    }; \\ Charles R Greathouse IV, Sep 11 2012

Formula

A positive integer k is a non-solvable number if and only if it is a multiple of any of the following numbers: a) 2^p*(2^(2*p)-1), p any prime. b) 3^p*(3^(2*p)-1)/2, p odd prime. c) p*(p^2-1)/2, p prime greater than 3 such that p^2 + 1 == 0 (mod 5). d) 2^4*3^3*13. e) 2^(2*p)*(2^(2*p)+1)*(2^p-1), p odd prime.

Extensions

More terms from Des MacHale, Feb 19 2001
Further terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A056868 Numbers that are not nilpotent numbers.

Original entry on oeis.org

6, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 30, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 66, 68, 70, 72, 74, 75, 76, 78, 80, 82, 84, 86, 88, 90, 92, 93, 94, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116, 117, 118, 120
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Comments

A number is nilpotent if every group of order n is nilpotent.
The sequence "Numbers of the form (k*i + 1)*k*j with i, j >= 1 and k >= 2" agrees with this for the first 146 terms but then differs. Cf. A300737. - Gionata Neri, Mar 11 2018

Examples

			From _Bernard Schott_, Dec 19 2021: (Start)
There are 2 groups with order 6: C_6 that is cyclic so nilpotent, and the symmetric group S_3 that is not nilpotent, hence 6 is a term.
There are also 2 groups with order 10: C_10 that is cyclic so nilpotent, and the dihedral group D_10 that is not nilpotent, hence 10 is another term. (End)
		

Crossrefs

Complement of A056867.
Subsequence of A060652; A068919 is a subsequence.

Programs

  • Haskell
    a056868 n = a056868_list !! (n-1)
    a056868_list = filter (any (== 1) . pks) [1..] where
       pks x = [p ^ k `mod` q | let fs = a027748_row x, q <- fs,
                                (p,e) <- zip fs $ a124010_row x, k <- [1..e]]
    -- Reinhard Zumkeller, Jun 28 2013
  • Mathematica
    nilpotentQ[n_] := With[{f = FactorInteger[n]}, Sum[ Boole[ Mod[p[[1]]^p[[2]], q[[1]]] == 1], {p, f}, {q, f}]] == 0; Select[ Range[120], !nilpotentQ[#]& ] (* Jean-François Alcover, Sep 03 2012 *)
  • PARI
    is(n)=my(f=factor(n));for(k=1,#f[,1], for(j=1,f[k,2], if(gcd(n, f[k,1]^j-1)>1, return(1)))); 0 \\ Charles R Greathouse IV, Sep 18 2012
    

Formula

n is in this sequence if p^k = 1 mod q for primes p and q dividing n such that p^k divides n. - Charles R Greathouse IV, Aug 27 2012

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A060689 Number of nonabelian groups of order n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 9, 0, 3, 0, 3, 1, 1, 0, 12, 0, 1, 2, 2, 0, 3, 0, 44, 0, 1, 0, 10, 0, 1, 1, 11, 0, 5, 0, 2, 0, 1, 0, 47, 0, 3, 0, 3, 0, 12, 1, 10, 1, 1, 0, 11, 0, 1, 2, 256, 0, 3, 0, 3, 0, 3, 0, 44, 0, 1, 1, 2, 0, 5, 0, 47, 10, 1, 0, 13, 0, 1, 0, 9, 0, 8, 0, 2
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

Keywords

Comments

a(n) = 0 iff n belongs to sequence A051532.

Examples

			a(6) = 1 because the only non-Abelian group of order 6 is the symmetric group S_3.
		

Crossrefs

Programs

Formula

a(n) = A000001(n) - A000688(n).

Extensions

Corrected by Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001

A056867 Nilpotent numbers: n such that every group of order n is nilpotent.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 119, 121, 123, 125, 127, 128, 131, 133, 135, 137, 139
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Comments

Contains exactly the numbers n for which gcd(n,|A153038(n)|)=1 [Pazderski]. - R. J. Mathar, Apr 03 2012
A group G of order m is nilpotent iff it has a quotient group of order m/d for each divisor d of m. - Des MacHale and Bernard Schott, Jul 15 2022

Crossrefs

Complement of A056868.

Programs

  • GAP
    IsNilpotentInt := function(n)
      local f, i, j; f := PrimePowersInt(n);
      for i in [1..Length(f)/2] do
        for j in [1..f[2*i]] do
          if Gcd(f[2*i-1]^j-1, n) > 1 then return false; fi;
        od;
      od;
      return true;
    end;
    Filtered([1..140], IsNilpotentInt); # Gheorghe Coserea, Dec 02 2017
  • Mathematica
    A153038[1] = 1; A153038[n_] := (x = 1; Do[p = f[[1]]; e = f[[2]]; x = x*Product[1 - p^s, {s, 1, e}], {f, FactorInteger[n]}]; x); A056867 = Select[Range[140], GCD[#, Abs[A153038[#]]] == 1 &] (* Jean-François Alcover, May 15 2012, after R. J. Mathar *)
  • PARI
    is(n)=my(f=factor(n));for(k=1,#f[,1], for(j=1,f[k,2], if(gcd(n, f[k,1]^j-1)>1, return(0)))); 1 \\ Charles R Greathouse IV, Sep 18 2012
    

Formula

n is in this sequence if p^k is not congruent to 1 mod q for any primes p and q dividing n such that p^e but not p^(e+1) divides n and k <= e. - Charles R Greathouse IV, Aug 27 2012

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A060652 Orders of non-Abelian groups: n such that some group of order n is non-Abelian.

Original entry on oeis.org

6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 93, 94, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 17 2001

Keywords

Comments

Because of the existence of a non-Abelian dihedral group of order 2n for each n>2 all the even numbers >= 6 are in this sequence.

Crossrefs

Complement of A051532.
Union of A056868 and A046099. - Reinhard Zumkeller, Jun 28 2013

Programs

  • Haskell
    a060652 n = a060652_list !! (n-1)
    a060652_list = filter h [1..] where
       h x = any (> 2) (map snd pfs) || any (== 1) pks where
         pks = [p ^ k `mod` q | (p,e) <- pfs, q <- map fst pfs, k <- [1..e]]
         pfs = zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Jun 28 2013
    
  • Mathematica
    abelianQ[n_] := Module[{f, lf, p, e, v}, f = FactorInteger[n]; lf = Length[f]; p = f[[All, 1]]; e = f[[All, 2]]; If[AnyTrue[e, # > 2&], Return[False]]; v = p^e; For[i = 1, i <= lf, i++, For[j = i+1, j <= lf, j++, If[Mod[v[[i]], p[[j]]] == 1 || Mod[v[[j]], p[[i]]] == 1, Return[False]]]]; Return[True]];
    Select[Range[200], !abelianQ[#]&] (* Jean-François Alcover, Jul 19 2022, after Charles R Greathouse IV *)
  • PARI
    is(n)=my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(1), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(1)))); 0 \\ Charles R Greathouse IV, Apr 16 2015

Formula

Let the prime factorization of n be p1^e1...pr^er. Then n is in this sequence if ei>2 for some i or pi^k = 1 (mod pj) for some i and j and 1 <= k <= ei. - T. D. Noe, Mar 25 2007
Equivalently: Let the prime factorization of n be p1^e1...pr^er. Then n is in this sequence if ei>2 for some i or if pi^ei = 1 (mod pj) for some i and j. - Charles R Greathouse IV, Jan 09 2022

Extensions

More terms from T. D. Noe, Mar 11 2007
Showing 1-10 of 34 results. Next