cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A060650 Numbers n such that there exist exactly one non-Abelian group of order n, i.e., such that A060689(n) = 1.

Original entry on oeis.org

6, 10, 14, 21, 22, 26, 34, 38, 39, 46, 55, 57, 58, 62, 74, 75, 82, 86, 93, 94, 105, 106, 111, 118, 122, 129, 134, 142, 146, 155, 158, 165, 166, 178, 183, 194, 195, 201, 202, 203, 205, 206, 214, 218, 219, 226, 231, 237, 253, 254, 262, 274, 278, 285, 291, 298, 301
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001

Keywords

Extensions

More terms from T. D. Noe, Mar 11 2007

A000688 Number of Abelian groups of order n; number of factorizations of n into prime powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Equivalently, number of Abelian groups with n conjugacy classes. - Michael Somos, Aug 10 2010
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - Franklin T. Adams-Watters, Oct 20 2006
Range is A033637.
a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - Wolfdieter Lang, Sep 09 2012
Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - L. Edson Jeffery, Nov 29 2012
Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - R. J. Mathar, Nov 05 2016
See A060689 for the number of non-abelian groups of order n. - M. F. Hasler, Oct 24 2017
Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - Charles R Greathouse IV, Jul 14 2024

Examples

			a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
From _Wolfdieter Lang_, Jul 22 2011: (Start)
a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
(End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.

Crossrefs

Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).

Programs

  • Haskell
    a000688 = product . map a000041 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,ans): od: # James Sellers, Dec 07 2000
  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* Robert G. Wilson v, Sep 22 2006 *)
    Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
  • PARI
    A000688(n)=local(f);f=factor(n);prod(i=1,matsize(f)[1],numbpart(f[i,2])) \\ Michael B. Porter, Feb 08 2010
    
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,numbpart(f[i])) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    from sympy import factorint, npartitions
    from math import prod
    def A000688(n): return prod(map(npartitions,factorint(n).values())) # Chai Wah Wu, Jan 14 2022
  • Sage
    def a(n):
        F=factor(n)
        return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
    # Ralf Stephan, Jun 21 2014
    

Formula

Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
a(2n) = A101872(n).
a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - Wolfdieter Lang, Jul 23 2011
In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - Marko Riedel, Oct 03 2014
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - Álvar Ibeas, Nov 05 2014
a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - R. J. Mathar, Nov 05 2016
A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = A000001(n) - A060689(n). - M. F. Hasler, Oct 24 2017
From Amiram Eldar, Nov 01 2020: (Start)
a(n) = a(A057521(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - Miles Englezou, Feb 17 2024
Inverse Moebius transform of A188585: a(n) = Sum_{d|n} A188585(d). - Amiram Eldar, Jun 10 2025

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A386233 Number of good involutions of all nontrivial conjugation quandles of order A060652(n).

Original entry on oeis.org

1, 32, 1, 17, 1, 13056, 66, 33, 1, 1
Offset: 1

Views

Author

Luc Ta, Jul 16 2025

Keywords

Comments

A good involution f of a quandle Q is an involution that commutes with all inner automorphisms and satisfies the identity f(y)(x) = y^-1(x). We call the pair (Q,f) a symmetric quandle.
A conjugation quandle is a group viewed as a quandle under the conjugation operation. Since conjugation quandles of abelian groups are trivial, this sequence only considers nonabelian groups.

Examples

			For n = 1, 3, 5, 9, 10, there is a unique nonabelian group G of order A060652(n), and G is centerless. It follows from Ta, Prop. 5.3 that a(n) = 1.
		

References

  • Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.

Crossrefs

Programs

  • GAP
    See Ta, GitHub link

A083573 Maximal number of subgroups in a non-Abelian group with n elements, or zero if there are no non-Abelian groups of order n.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 0, 10, 0, 8, 0, 16, 0, 10, 0, 35, 0, 28, 0, 22, 10, 14, 0, 54, 0, 16, 19, 28, 0, 28, 0, 158, 0, 20, 0, 78, 0, 22, 16, 76, 0, 36, 0, 40, 0, 26, 0, 236, 0, 64, 0, 46, 0, 212, 14, 98, 22, 32, 0, 80, 0, 34, 36, 937, 0, 52, 0, 58, 0, 52, 0, 272
Offset: 1

Views

Author

Victoria A. Sapko (vsapko(AT)canes.gsw.edu), Jun 13 2003

Keywords

Comments

A group G is non-Abelian iff there are two elements x,y such that xy != yx. Then and are nontrivial subgroups whose order divides the order of G which therefore cannot be prime (neither the square of a prime: there are only two nonisomorphic groups of that order which are both abelian; see A051532 for more). This also implies that a(n) >= 2+2+2 = 6 for all nonzero elements of this sequence and for even n=2m>4 there is the non-Abelian dihedral group D_m with A007503(m)=sigma(m)+tau(m)=A000005(m)+A000203(m), providing a lower bound. - M. F. Hasler, Dec 03 2007

Examples

			a(6)=6 because the only non-Abelian group with 6 elements is S_3 with 6 subgroups.
		

Crossrefs

Programs

  • GAP
    A083573 := function(n) local max, grp, i; max := 0; for i in [1..NumberSmallGroups(n)] do grp := SmallGroup(n, i); if (not IsAbelian(grp)) then max := Maximum(max, Sum(ConjugacyClassesSubgroups(grp), Size)); fi; od; return max; end; # Eric M. Schmidt, Sep 07 2012

Formula

a(n) = 0 <=> A060689(n)=0 <=> n is in A051532 ; otherwise a(n) >= 6 and a(2n) >= A007503(n). - M. F. Hasler, Dec 03 2007

Extensions

More terms from Eric M. Schmidt, Sep 07 2012

A238877 Members of a pair (a,b) such that a is the number of Abelian groups of order n and b is the number of non-Abelian groups of order n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 2, 3, 1, 0, 1, 1, 1, 0, 5, 9, 1, 0, 2, 3, 1, 0, 2, 3, 1, 1, 1, 1, 1, 0, 3, 12, 2, 0, 1, 1, 3, 2, 2, 2, 1, 0, 1, 3, 1, 0, 7, 44, 1, 0, 1, 1, 1, 0, 4, 10, 1, 0, 1, 1, 1, 1, 3, 11, 1, 0, 1, 5, 1, 0
Offset: 1

Views

Author

Michel Lagneau, Mar 24 2014

Keywords

Comments

Pairs (A000688(n),A060689(n)).

Examples

			The 8th pair {3,2} is in the sequence because there exists 5 finite groups of order 8: 3 Abelian groups and 2 non-Abelian groups.
		

Crossrefs

Programs

  • Mathematica
    lst:={};f[n_]:=Times@@PartitionsP/@Last/@FactorInteger@n;g[n_]:=FiniteGroupCount[n]-FiniteAbelianGroupCount[n];Do[AppendTo[lst,{f[n],g[n]}],{n,80}];Flatten[lst]

A271664 Erroneous version of A271811 (but for odd primes only).

Original entry on oeis.org

491, 668, 844, 1183, 1474, 1961, 2293, 2936, 4190, 4686, 6244, 7363, 7999, 9266, 11456, 13835, 14766, 17449, 19348, 20419, 23578, 25781, 29375, 34549, 37228, 38644, 41471, 43018, 46001, 57454, 60913, 66371, 68263, 77960, 80016, 86254, 92689, 97076, 103946, 111005, 113496
Offset: 2

Views

Author

Michel Marcus, Apr 12 2016

Keywords

Comments

Previous name was "Number of non-abelian groups of order prime(n)^6".

Crossrefs

Cf. A000001 (groups), A060689 (non-abelian groups),
Cf. A030516 (primes^6)
Cf. A271811.

Programs

  • PARI
    a(n) = if (n==2, 491, my(p=prime(n)); (13*p^2 + 145*p + 1338 + 80*gcd(p-1, 3) + 45*gcd(p-1, 4) + 8*gcd(p-1, 5) + 8*gcd(p-1, 6))/4);

Formula

a(n) = (13*p^2 + 145*p + 1338 + 80*gcd(p-1,3) + 45*gcd(p-1,4) + 8*gcd(p-1, 5) + 8*gcd(p-1,6))/4 for n>2 and where p = prime(n). See [Rodney James].

A271811 Number of non-abelian groups of order prime(n)^6.

Original entry on oeis.org

256, 493, 673, 849, 1181, 1465, 1933, 2253, 2865, 4057, 4529, 6001, 7053, 7653, 8841, 10897, 13125, 14001, 16509, 18281, 19285, 22233, 24285, 27637, 32461, 34953, 36273, 38901, 40345, 43117, 53769, 56981, 62053, 63813, 72817, 74729, 80521, 86493, 90561, 96937, 103485, 105801, 117281
Offset: 1

Views

Author

Altug Alkan, Apr 14 2016

Keywords

Comments

A000688(p^6) is 11 for all prime p.

Crossrefs

Programs

  • GAP
    A271811 := Concatenation([256, 493], List(Filtered([5..10^4], IsPrime), p -> 3 * p^2 + 39 * p + 333 + 24 * Gcd(p-1, 3) + 11 * Gcd(p-1, 4) + 2 * Gcd(p-1,5))); # Muniru A Asiru, Nov 18 2017
  • Mathematica
    Table[FiniteGroupCount[#] - FiniteAbelianGroupCount[#] &[Prime[n]^6], {n, 43}] (* Michael De Vlieger, Apr 15 2016, after Vladimir Joseph Stephan Orlovsky at A060689 *)
  • PARI
    a(n) = if (n==1, 256, if (n==2, 493, my(p=prime(n)); 3*p^2 + 39*p + 333 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5)));
    

Formula

a(n) = A232106(n) - 11.
a(n) = A060689(prime(n)^6) = A060689(A030516(n)).
For a prime p > 3, the number of non-abelian groups of order p^6 is 3p^2 + 39p + 333 + 24 gcd(p - 1, 3) + 11 gcd(p - 1, 4) + 2 gcd(p - 1, 5).

A361414 Number of non-abelian indecomposable groups of order n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 7, 0, 2, 0, 2, 1, 1, 0, 6, 0, 1, 2, 1, 0, 1, 0, 33, 0, 1, 0, 4, 0, 1, 1, 5, 0, 2, 0, 1, 0, 1, 0, 23, 0, 2, 0, 2, 0, 6, 1, 5, 1, 1, 0, 3, 0, 1, 1, 200, 0, 1, 0, 2, 0, 1, 0, 19, 0, 1, 1, 1, 0, 2, 0, 24, 8, 1, 0, 3, 0
Offset: 1

Views

Author

Kevin Lamoreau, Mar 10 2023

Keywords

Examples

			a(16) = 7 because 1 of the 8 indecomposable groups of order 16 is abelian and 2 of the 9 non-abelian groups of order 16 are decomposable, leaving 7 non-abelian indecomposable groups of order 16.
		

Crossrefs

Formula

a(n) = A090751(n) - A069513(n).

A066295 Number of Abelian groups of order n minus the number of non-Abelian groups of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 1, 2, 0, 1, -1, 1, 0, 1, -4, 1, -1, 1, -1, 0, 0, 1, -9, 2, 0, 1, 0, 1, -2, 1, -37, 1, 0, 1, -6, 1, 0, 0, -8, 1, -4, 1, 0, 2, 0, 1, -42, 2, -1, 1, -1, 1, -9, 0, -7, 0, 0, 1, -9, 1, 0, 0, -245, 1, -2, 1, -1, 1, -2, 1, -38, 1, 0, 1, 0, 1, -4, 1, -42, -5, 0, 1, -11, 1, 0, 1, -6, 1, -6, 1, 0, 0
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jan 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2 FiniteAbelianGroupCount[n] - FiniteGroupCount[n];
    a /@ Range[100] (* Jean-François Alcover, Jan 01 2020 *)

Formula

a(n) = A000688(n) - A060689(n).

Extensions

Edited by Dean Hickerson, Mar 04 2002
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003
Showing 1-10 of 13 results. Next