A051533 Numbers that are the sum of two positive triangular numbers.
2, 4, 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 22, 24, 25, 27, 29, 30, 31, 34, 36, 37, 38, 39, 42, 43, 46, 48, 49, 51, 55, 56, 57, 58, 60, 61, 64, 65, 66, 67, 69, 70, 72, 73, 76, 79, 81, 83, 84, 87, 88, 90, 91, 92, 93, 94, 97, 99, 100, 101, 102, 106, 108
Offset: 1
Examples
666 is in the sequence because we can write 666 = 435 + 231 = binomial(22,2) + binomial(30,2).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Fermat's Polygonal Number Theorem
Crossrefs
Programs
-
Haskell
a051533 n = a051533_list !! (n-1) a051533_list = filter ((> 0) . a053603) [1..] -- Reinhard Zumkeller, Jun 28 2013
-
Maple
isA051533 := proc(n) local a,ta; for a from 1 do ta := A000217(a) ; if 2*ta > n then return false; end if; if isA000217(n-ta) then return true; end if; end do: end proc: for n from 1 to 200 do if isA051533(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 16 2015
-
Mathematica
f[k_] := If[! Head[Reduce[m (m + 1) + n (n + 1) == 2 k && 0 < m && 0 < n, {m, n}, Integers]] === Symbol, k, 0]; DeleteCases[Table[f[k], {k, 1, 108}], 0] (* Ant King, Nov 22 2010 *) nn=50; tri=Table[n(n+1)/2, {n,nn}]; Select[Union[Flatten[Table[tri[[i]]+tri[[j]], {i,nn}, {j,i,nn}]]], #<=tri[[-1]] &] With[{nn=70},Take[Union[Total/@Tuples[Accumulate[Range[nn]],2]],nn]] (* Harvey P. Dale, Jul 16 2015 *)
-
PARI
is(n)=for(k=ceil((sqrt(4*n+1)-1)/2),(sqrt(8*n-7)-1)\2, if(ispolygonal(n-k*(k+1)/2, 3), return(1))); 0 \\ Charles R Greathouse IV, Jun 09 2015
Formula
A053603(a(n)) > 0. - Reinhard Zumkeller, Jun 28 2013
A061336(a(n)) = 2. - M. F. Hasler, Mar 06 2017
Comments