cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051643 Central elements in Parker's partition triangle.

Original entry on oeis.org

1, 3, 20, 169, 1667, 18084, 208960, 2527074, 31630390, 406680465, 5342750699, 71442850111, 969548468960, 13323571588607, 185072895183632, 2594890728951909, 36681505784903758, 522291180086851188, 7484621370716999785, 107876522368295972285, 1562916545414144667559
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
           b(2*n*(n+1), 2*n+1$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 30 2020
  • Mathematica
    a[n_] := SeriesCoefficient[QBinomial[2(2n+1), 2n+1, q], {q, 0, 2n(n+1)}];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 19 2019 *)

Formula

a(n) = coefficient of q^((m^2-1)/2) = q(2*n*(n+1)) in the q-binomial coefficient [2*m, m] = [2*(2*n+1), 2*n+1], where m = 2*n+1. [Corrected by Petros Hadjicostas, May 30 2020]
a(n) is the number of partitions of 2*n*(n+1) into at most 2*n+1 parts each no bigger than 2*n+1. - Petros Hadjicostas, May 30 2020

Extensions

a(18)-a(20) from Alois P. Heinz, May 30 2020