cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051728 Smallest number at distance 2n from nearest prime.

Original entry on oeis.org

2, 0, 23, 53, 409, 293, 211, 1341, 1343, 2179, 3967, 15705, 16033, 19635, 31425, 24281, 31429, 31431, 31433, 155959, 38501, 58831, 203713, 268343, 206699, 370311, 370313, 370315, 370317, 1349591, 1357261, 1272749, 1357265, 1357267, 2010801, 2010803, 2010805, 2010807
Offset: 0

Views

Author

Keywords

Comments

a(0) = 2. For n > 0, let f(m) = minimal distance from m to closest prime (excluding m itself). The a(n) = min { m : f(m) = 2n }.
f(m) is tabulated in A051700. - R. J. Mathar, Nov 18 2007

Crossrefs

Programs

  • Maple
    A051700 := proc(m) if m <= 2 then op(m+1,[2,1,1]) ; else min(nextprime(m)-m,m-prevprime(m)) ; fi ; end: A051728 := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = 2 * n then RETURN(m) ; fi ; od: fi ; end: seq(A051728(n),n=0..20) ; # R. J. Mathar, Nov 18 2007
  • Mathematica
    a[n_] := Module[{m}, If[n == 0, Return[2], For[m = 0, True, m++, If[Min[NextPrime[m]-m, m-NextPrime[m, -1]] == 2*n, Return[m]]]]]; Table[Print[an = a[n]]; an, {n, 0, 33}] (* Jean-François Alcover, Feb 11 2014, after R. J. Mathar *)
    Join[{2},With[{t=Table[{n,Min[n-NextPrime[n,-1],NextPrime[n]-n]},{n,0,1358000}]},Table[SelectFirst[t,#[[2]]==2k&],{k,33}]][[All,1]]] (* Harvey P. Dale, Aug 13 2019 *)

Formula

a(n) = A051652(2*n). - Sean A. Irvine, Oct 01 2021

Extensions

More terms from James Sellers, Dec 07 1999
More terms from Amiram Eldar, Aug 28 2021