cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051743 a(n) = (1/24)*n*(n + 5)*(n^2 + n + 6).

Original entry on oeis.org

2, 7, 18, 39, 75, 132, 217, 338, 504, 725, 1012, 1377, 1833, 2394, 3075, 3892, 4862, 6003, 7334, 8875, 10647, 12672, 14973, 17574, 20500, 23777, 27432, 31493, 35989, 40950, 46407, 52392, 58938, 66079, 73850, 82287, 91427, 101308, 111969, 123450
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

Keywords

Comments

This is exactly the number of directed column-convex polyominoes. [Something is clearly missing from this sentence; as it stands, it makes no reference to the index n. - Jon E. Schoenfield, Dec 20 2016]
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n-3)=coeff(charpoly(A,x),x^(n-4)). [Milan Janjic, Jan 24 2010]

Crossrefs

Programs

  • Mathematica
    Table[(n (n + 5) (n^2 + n + 6))/24, {n, 50}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {2, 7, 18, 39, 75}, 50]
  • PARI
    Vec((x^3-3*x^2+3*x-2)/(x-1)^5 + O(x^50)) \\ G. C. Greubel, Dec 21 2016

Formula

a(n) = binomial(n+3, n-1) + binomial(n, n-1) = binomial(n+3, 4) + binomial(n, 1), n > 0.
From Harvey P. Dale, Nov 29 2011: (Start)
a(1)=2, a(2)=7, a(3)=18, a(4)=39, a(5)=75, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (x^3-3*x^2+3*x-2)/(x-1)^5. (End)
E.g.f.: (1/24)*(48*x + 36*x^2 + 12*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 21 2016