A051764 Number of torus knots with n crossings.
0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 1, 3, 3
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- D. Bar-Natan, 36 Torus Knots(with up to 36 crossings)
- Jim Hoste, Morwen Thistlethwaite, Jeff Weeks, The First 1,701,936 Knots, Math. Intell., 20, 33-48, Fall 1998.
- Andrei Malyutin, On the question of genericity of hyperbolic knots, arXiv preprint arXiv:1612.03368 [math.GT], 2016.
- Kunio Murasugi, On the braid index of alternating links, Trans. Amer. Math. Soc. 326 (1991), 237-260.
- R. G. Scharein, Torus knots and links by crossing number
- Eric Weisstein's World of Mathematics, Hyperbolic Knot
- Eric Weisstein's World of Mathematics, Knot
- Eric Weisstein's World of Mathematics, Torus Knot
Programs
-
Maple
a:= n-> nops(select(k-> n
Alois P. Heinz, Apr 25 2012 -
Mathematica
a[n_] := (r = Reduce[Sqrt[n] < k <= n && GCD[k, 1 + n/k] == 1, k, Integers]; Which[r === False, 0, r[[0]] === Equal, 1, True, Length[r]]); Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jan 16 2013 *)
-
PARI
a(n)=my(t=sqrtint(n));sumdiv(n,k,k>t && gcd(k,n/k+1)==1) \\ Charles R Greathouse IV, Apr 26 2012
Formula
a(n) = cardinality of the set {k| sqrt(n) < k <= n and gcd(k, 1+n/k) = 1}; see Murasugi article. - Hermann Gruber, Mar 05 2003