Original entry on oeis.org
0, 0, 0, 1, 1, 3, 6, 20, 48, 164, 551, 2176, 9985, 46969, 253285, 1388694, 8053363, 48266380, 294130212
Offset: 1
- Benjamin A. Burton, The next 350 million knots, 36th International Symposium on Computational Geometry (SoCG 2020), Leibniz Int. Proc. Inform., vol. 164, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020, pp. 25:1-25:17. See also knot tables in Supporting Data for Regina.
- Jim Hoste, Morwen Thistlethwaite and Jeff Weeks, The First 1,701,936 Knots, Math. Intell., 20, 33-48, Fall 1998.
- Andrei Malyutin, On the question of genericity of hyperbolic knots, arXiv preprint arXiv:1612.03368 [math.GT], 2016.
- Eric Weisstein's World of Mathematics, Hyperbolic Knot.
A052407
Number of nonhyperbolic prime knots with n crossings (A051764+A051765).
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 3, 3, 8, 11
Offset: 1
A123192
Triangle read by rows: row n gives the coefficients in the expansion of x^abs(3*n - 2)*p(n;x), where p(n;x) denotes the bracket polynomial for the (2,n)-torus knots.
Original entry on oeis.org
-1, 0, 0, 0, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0
Offset: 0
From _Franck Maminirina Ramaharo_, Aug 11 2018: (Start)
The bracket polynomial for some value of n:
p(0;x) = -x^2 - 1/x^2;
p(1;x) = -x^3;
p(2;x) = -x^4 - 1/x^4;
p(3;x) = -x^5 - 1/x^3 + 1/x^7;
p(4;x) = -x^6 - 1/x^2 + 1/x^6 - 1/x^10;
p(5;x) = -x^7 - 1/x + 1/x^5 - 1/x^9 + 1/x^13;
p(6;x) = -x^8 - 1 + 1/x^4 - 1/x^8 + 1/x^12 - 1/x^16;
p(7;x) = -x^9 - x + 1/x^3 - 1/x^7 + 1/x^11 - 1/x^15 + 1/x^19;
...
The triangle giving the coefficients in x^abs(3*n - 2)*p(n;x) begins:
-1, 0, 0, 0, -1
0, 0, 0, 0, -1
-1, 0, 0, 0, 0, 0, 0, 0, -1
1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1
-1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1
1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1
...
(End)
- Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 38 and p. 353.
- Paul Corbitt, Torus Links and the Bracket Polynomial.
- Louis H. Kauffman, State models and the Jones polynomial, Topology Vol. 26 (1987), 395-407.
- Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Bracket Polynomial.
- Eric Weisstein's World of Mathematics, Torus Knot.
- Wikipedia, Torus knot.
- Wikipedia, Medial graph.
-
K(n, A, B, d) := if n = 0 then d else A*K(n - 1, A, B, d) + B*(A + B*d)^(n - 1)$
p(n, x) := x^abs(3*n - 2)*K(n, x, 1/x, -x^(-2) - x^2)$
t(n, k) := ratcoef(p(n, x), x, k)$
T:[]$
for n:0 thru 10 do T:append(T, makelist(t(n,k), k, 0, max(4, 4*n)))$
T; /* Franck Maminirina Ramaharo, Aug 11 2018 */
A051765
Number of prime satellite knots with n crossings.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 10, 29, 86, 245
Offset: 1
- Benjamin A. Burton, The next 350 million knots, 36th International Symposium on Computational Geometry (SoCG 2020), Leibniz Int. Proc. Inform., vol. 164, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020, pp. 25:1-25:17. See also knot tables in Supporting Data for Regina.
- Jim Hoste, Morwen Thistlethwaite and Jeff Weeks, The First 1,701,936 Knots, Math. Intell., 20, 33-48, Fall 1998.
- Andrei Malyutin, On the question of genericity of hyperbolic knots, arXiv preprint arXiv:1612.03368 [math.GT], 2016.
- Eric Weisstein's World of Mathematics, Hyperbolic Knot
- Eric Weisstein's World of Mathematics, Knot
- Eric Weisstein's World of Mathematics, Satellite Knot
A379242
Minimum crossing number at which there are n torus knots.
Original entry on oeis.org
1, 3, 15, 63, 189, 432, 792, 1232, 1584, 2880, 4320, 5040, 6336, 7920, 12096, 15120, 19008, 22176, 30240, 33264, 43200, 47520, 44352, 65520, 75600, 108000, 90720, 120960, 168480, 131040, 151200, 181440, 252000, 196560, 221760, 237600, 362880, 403200, 302400
Offset: 0
3 = 3*(2-1), 15 = 15*(2-1) = 5*(4-1), 63 = 63*(2-1) = 9*(8-1) = 21*(4-1).
First occurrence of each n in
A051764.
Showing 1-5 of 5 results.
Comments