cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A082520 Palindromic Sophie Germain primes: both p and 2p+1 are palindromic primes.

Original entry on oeis.org

2, 3, 5, 191, 19391, 38183, 1508051, 1609061, 1628261, 3717173, 3916193, 161535161, 161838161, 170646071, 172747271, 182949281, 190909091, 352909253, 354848453, 360818063, 364636463, 15052625051, 15150805151, 15253635251
Offset: 1

Views

Author

Lekraj Beedassy, Apr 30 2003

Keywords

Comments

Subsequence of A051835 (intersection of A002385 and A005384).

Examples

			3916193 is in the sequence because both 3916193 and 2*3916193 + 1 = 7832387 are palindromic primes.
		

References

  • H. Dubner, "Palindromic Sophie Germain primes", Journal of Recreational Mathematics, Vol. 26(1):38-41 1994 Baywood Inc. NY

Crossrefs

The associated primes are listed in A082565.

Programs

  • Mathematica
    Select[Prime@Range@1000000,PalindromeQ@#&&PalindromeQ[2#+1]&&PrimeQ[2#+1]&] (* Giorgos Kalogeropoulos, May 14 2021 *)

A118573 Sophie Germain primes for which the reversal is also a Sophie Germain prime.

Original entry on oeis.org

2, 3, 5, 11, 131, 191, 359, 953, 1229, 1583, 3851, 9221, 10061, 11579, 11939, 12119, 12821, 13619, 14081, 14741, 14939, 15791, 15803, 16001, 16883, 18041, 19163, 19391, 19751, 19991, 30851, 31859, 32633, 33623, 33809, 35993, 36191, 36563
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 07 2006

Keywords

Comments

{k such that k is in A005384 and A004086(k) is in A005384}. - Jonathan Vos Post, Apr 18 2008

Examples

			359 is in the sequence because it is a Sophie Germain prime and its reversal 953 is also a Sophie Germain prime.
		

Crossrefs

A051835 is a subsequence.

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[2*# + 1] && PrimeQ[FromDigits[Reverse[ IntegerDigits[ # ]]]] && PrimeQ[2*FromDigits[Reverse[IntegerDigits[ # ]]] + 1] &] (* Stefan Steinerberger, May 18 2008 *)
    fQ[n_] := (rp = FromDigits@ Reverse@ IntegerDigits@n; PrimeQ[2n + 1] && PrimeQ[rp] && PrimeQ[2rp + 1]); Select[Prime@ Range@4093, fQ@# &] (* Robert G. Wilson v, May 09 2006 *)

Extensions

More terms from Robert G. Wilson v and Adam Panagos (adam.panagos(AT)gmail.com), May 09 2006
Edited by N. J. A. Sloane, Mar 02 2009 at the suggestion of R. J. Mathar
Showing 1-2 of 2 results.