A051845 Triangle T(n,k) read by rows, in which row n gives all permutations of digits 1..n interpreted in base n+1.
1, 5, 7, 27, 30, 39, 45, 54, 57, 194, 198, 214, 222, 238, 242, 294, 298, 334, 346, 358, 366, 414, 422, 434, 446, 482, 486, 538, 542, 558, 566, 582, 586, 1865, 1870, 1895, 1905, 1930, 1935, 2045, 2050, 2105, 2120, 2140, 2150, 2255, 2265, 2285, 2300, 2355, 2360
Offset: 1
Examples
Triangle begins: k=1 k=2 k=3 ... n=1: 1; n=2 5, 7; n=3: 27, 30, ..., 57; n=4: 194, 198, 214, ..., 586; n=5: 1865, 1870, 1905, 1930, ..., 7465; E.g., the permutations of digits 1, 2 and 3 in lexicographic order are 123, 132, 213, 231, 312, 321, which interpreted in base 4 give the third row of the table: 27, 30, 39, 45, 54, 57.
Links
- Samuel Harkness, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(combinat,permute); compute_u_rows := proc(u) local a,n; a := []; for n from 1 to u do a := [op(a),op(map(list_in_base_b,permute(n),(n+1)))]; od; RETURN(a); end; list_in_base_b := proc(l,b) local k; add(l[nops(l)-k]*(b^k), k=0..(nops(l)-1)); end;
-
Mathematica
a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[1 + w[[m]], n + 2]; AppendTo[a, j], {m, 1, Length[w]}], {n, 0, 5}]; a (* Artur Jasinski, Nov 08 2007 *)
-
Python
from itertools import permutations def fd(d, b): return sum(di*b**i for i, di in enumerate(d[::-1])) def row(n): return [fd(d, n+1) for d in permutations(range(1, n+1))] print([an for r in range(1, 6) for an in row(r)]) # Michael S. Branicky, Oct 21 2022
Comments