cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051845 Triangle T(n,k) read by rows, in which row n gives all permutations of digits 1..n interpreted in base n+1.

Original entry on oeis.org

1, 5, 7, 27, 30, 39, 45, 54, 57, 194, 198, 214, 222, 238, 242, 294, 298, 334, 346, 358, 366, 414, 422, 434, 446, 482, 486, 538, 542, 558, 566, 582, 586, 1865, 1870, 1895, 1905, 1930, 1935, 2045, 2050, 2105, 2120, 2140, 2150, 2255, 2265, 2285, 2300, 2355, 2360
Offset: 1

Views

Author

Antti Karttunen, Dec 13 1999

Keywords

Comments

All terms in any odd row 2m+1 are divisible by 2m+1
The n-th row has n! elements.
Variant of permutational numbers with shifted digits 0->1->2->...->p+1 in p+1 positional system -- see A134750. - Artur Jasinski, Nov 08 2007
From Alexander R. Povolotsky, Oct 22 2022: (Start)
All terms in any even-indexed row n=2m are divisible by m, where m>0.
Row n starts with T(n,1) = ((n+1)^(n+1)-n^2-n-1)/n^2 = A023811(n+1).
Row n ends with T(n,n!) = ((n+1)^(n+1)*(n-1)+1)/n^2 = A051846(n).
(End)

Examples

			Triangle begins:
         k=1   k=2   k=3  ...
  n=1:     1;
  n=2      5,    7;
  n=3:    27,   30,  ...,   57;
  n=4:   194,  198,  214,  ..., 586;
  n=5:  1865, 1870, 1905, 1930, ..., 7465;
E.g., the permutations of digits 1, 2 and 3 in lexicographic order are 123, 132, 213, 231, 312, 321, which interpreted in base 4 give the third row of the table: 27, 30, 39, 45, 54, 57.
		

Crossrefs

Left edge = A023811, right edge = A051846.

Programs

  • Maple
    with(combinat,permute); compute_u_rows := proc(u) local a,n; a := []; for n from 1 to u do a := [op(a),op(map(list_in_base_b,permute(n),(n+1)))]; od; RETURN(a); end; list_in_base_b := proc(l,b) local k; add(l[nops(l)-k]*(b^k), k=0..(nops(l)-1)); end;
  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[1 + w[[m]], n + 2]; AppendTo[a, j], {m, 1, Length[w]}], {n, 0, 5}]; a (* Artur Jasinski, Nov 08 2007 *)
  • Python
    from itertools import permutations
    def fd(d, b): return sum(di*b**i for i, di in enumerate(d[::-1]))
    def row(n): return [fd(d, n+1) for d in permutations(range(1, n+1))]
    print([an for r in range(1, 6) for an in row(r)]) # Michael S. Branicky, Oct 21 2022