cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067755 Even legs of Pythagorean triangles whose other leg and hypotenuse are both prime.

Original entry on oeis.org

4, 12, 60, 180, 420, 1740, 1860, 2520, 3120, 5100, 8580, 9660, 16380, 19800, 36720, 60900, 71820, 83640, 100800, 106260, 135720, 161880, 163020, 199080, 205440, 218460, 273060, 282000, 337020, 388080, 431520, 491040, 531480, 539760, 552300
Offset: 1

Views

Author

Henry Bottomley, Jan 31 2002

Keywords

Comments

Apart from the first two terms, every term is divisible by 60 and is of the form 450*k^2 +/- 30*k or 450*k^2 +/- 330*k + 60 for some k.
In such a triangle, this even leg is always the longer leg, and the hypotenuse = a(n) + 1. The Pythagorean triples are (A048161(n), a(n), A067756(n)), so, for a(2) = 12, the corresponding Pythagorean triple is (5, 12, 13). - Bernard Schott, Apr 12 2023

Examples

			4 is a term: in the right triangle (3, 4, 5), 3 and 5 are prime.
5100 is a term: in the right triangle (101, 5100, 5101), 101 and 5101 are prime.
		

Crossrefs

Cf. A048161, A067756. Contains every value of A051858.

Programs

  • Mathematica
    lst={}; Do[q=(Prime[n]^2+1)/2; If[PrimeQ[q], AppendTo[lst, (Prime[n]^2-1)/2]], {n, 200}]; lst (* Frank M Jackson, Nov 02 2013 *)

Formula

a(n) = (A048161(n)^2 - 1)/2 = A067756(n) - 1.

A051859 Values of C (the hypotenuse) of a Pythagorean triangle with A (the short leg) and C both prime and part of a twin prime.

Original entry on oeis.org

5, 13, 61, 181, 421, 5101, 60901, 135721, 161881, 163021, 218461, 595141, 1108561, 2574181, 2740141, 3248701, 3535141, 3723721, 3729181, 8197201, 13933921, 20218441, 23605321, 28569241, 33874681, 47248921, 68667481, 69372421
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Dec 14 1999

Keywords

Comments

All terms of the sequence must be part of a Pythagorean triple of the form (2u-1), 2u*(u-1), (2u^2 - 2u + 1). - Joshua Zucker, May 12 2006

Crossrefs

See A051642 for the A's and A051858 for the B's.
Subset of A067756.

Programs

  • Mathematica
    tppQ[{a_,b_,c_}]:=AllTrue[{a,c},PrimeQ]&&AnyTrue[a+{2,-2},PrimeQ] && AnyTrue[ c+{2,-2},PrimeQ]; Select[Table[{2n-1,2n(n-1),2n^2-2n+1},{n,2,10000}],tppQ][[All,3]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 27 2021 *)

Formula

A051858 + 1, or 2*A051891^2 - 2*A051891 + 1, or 2*A051892^2 + 2*A051892 + 1. - Joshua Zucker, May 12 2006

Extensions

More terms from Joshua Zucker, May 12 2006

A051892 Values of e, the lesser key or generating number for Pythagorean triangles in which S (the odd short leg) and U (the hypotenuse) are twin primes.

Original entry on oeis.org

1, 2, 5, 9, 14, 50, 174, 260, 284, 285, 330, 545, 744, 1134, 1170, 1274, 1329, 1364, 1365, 2024, 2639, 3179, 3435, 3779, 4115, 4860, 5859, 5889, 6035, 6669, 8645, 8960, 8979, 9714, 9944, 10115, 10179, 15770, 16589, 16875, 19325, 20214, 20265, 21450
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Dec 17 1999

Keywords

Crossrefs

Equals A051891 - 1. See A051642 for the S's, A051859 for the U's and A051858 for the T's (the even long leg).

Extensions

More terms from Joshua Zucker, May 12 2006

A051891 Values of m, the main key or generating number for Pythagorean triangles in which S (the odd short leg) and U (the hypotenuse) are twin primes.

Original entry on oeis.org

2, 3, 6, 10, 15, 51, 175, 261, 285, 286, 331, 546, 745, 1135, 1171, 1275, 1330, 1365, 1366, 2025, 2640, 3180, 3436, 3780, 4116, 4861, 5860, 5890, 6036, 6670, 8646, 8961, 8980, 9715, 9945, 10116, 10180, 15771, 16590, 16876, 19326, 20215, 20266, 21451
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Dec 17 1999

Keywords

Crossrefs

Cf. A051892. See A051642 for the S's, A051859 for the U's and A051858 for the T's (the even long leg).

Formula

a(n) = (A051642(n) + 1) / 2. - Sean A. Irvine, Oct 12 2021

Extensions

More terms from Joshua Zucker, May 12 2006
Showing 1-4 of 4 results.