cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068501 Values m such that the consecutive pair parameters(m,m+1) generate Pythagorean triples whose odd terms are both prime.

Original entry on oeis.org

1, 2, 5, 9, 14, 29, 30, 35, 39, 50, 65, 69, 90, 99, 135, 174, 189, 204, 224, 230, 260, 284, 285, 315, 320, 330, 369, 375, 410, 440, 464, 495, 515, 519, 525, 534, 545, 564, 575, 585, 590, 680, 719, 729, 744, 749, 765, 854, 870, 905, 915, 950, 974, 1080, 1119
Offset: 1

Views

Author

Lekraj Beedassy, Mar 25 2002

Keywords

Comments

Setting u=m; v=m+1, triples (a,b,c) with a=u+v, b=2*u*v, c = u^2+v^2 = (a^2+1)/2 correspond to (A048161, A067755, A067756), a and c being both prime.

Crossrefs

Cf. A051892.

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[(n+1)^2-n^2]&&PrimeQ[(n+1)^2+n^2],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 01 2010 *)
    Reap[Do[a=Prime[k];If[PrimeQ[(a^2+1)/2],Sow[(a-1)/2]],{k,2,10^5}]][[2,1]](* Zak Seidov, Apr 16 2011 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 19 2002

A051859 Values of C (the hypotenuse) of a Pythagorean triangle with A (the short leg) and C both prime and part of a twin prime.

Original entry on oeis.org

5, 13, 61, 181, 421, 5101, 60901, 135721, 161881, 163021, 218461, 595141, 1108561, 2574181, 2740141, 3248701, 3535141, 3723721, 3729181, 8197201, 13933921, 20218441, 23605321, 28569241, 33874681, 47248921, 68667481, 69372421
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Dec 14 1999

Keywords

Comments

All terms of the sequence must be part of a Pythagorean triple of the form (2u-1), 2u*(u-1), (2u^2 - 2u + 1). - Joshua Zucker, May 12 2006

Crossrefs

See A051642 for the A's and A051858 for the B's.
Subset of A067756.

Programs

  • Mathematica
    tppQ[{a_,b_,c_}]:=AllTrue[{a,c},PrimeQ]&&AnyTrue[a+{2,-2},PrimeQ] && AnyTrue[ c+{2,-2},PrimeQ]; Select[Table[{2n-1,2n(n-1),2n^2-2n+1},{n,2,10000}],tppQ][[All,3]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 27 2021 *)

Formula

A051858 + 1, or 2*A051891^2 - 2*A051891 + 1, or 2*A051892^2 + 2*A051892 + 1. - Joshua Zucker, May 12 2006

Extensions

More terms from Joshua Zucker, May 12 2006

A051891 Values of m, the main key or generating number for Pythagorean triangles in which S (the odd short leg) and U (the hypotenuse) are twin primes.

Original entry on oeis.org

2, 3, 6, 10, 15, 51, 175, 261, 285, 286, 331, 546, 745, 1135, 1171, 1275, 1330, 1365, 1366, 2025, 2640, 3180, 3436, 3780, 4116, 4861, 5860, 5890, 6036, 6670, 8646, 8961, 8980, 9715, 9945, 10116, 10180, 15771, 16590, 16876, 19326, 20215, 20266, 21451
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Dec 17 1999

Keywords

Crossrefs

Cf. A051892. See A051642 for the S's, A051859 for the U's and A051858 for the T's (the even long leg).

Formula

a(n) = (A051642(n) + 1) / 2. - Sean A. Irvine, Oct 12 2021

Extensions

More terms from Joshua Zucker, May 12 2006
Showing 1-3 of 3 results.