A051871 19-gonal (or enneadecagonal) numbers: n(17n-15)/2.
0, 1, 19, 54, 106, 175, 261, 364, 484, 621, 775, 946, 1134, 1339, 1561, 1800, 2056, 2329, 2619, 2926, 3250, 3591, 3949, 4324, 4716, 5125, 5551, 5994, 6454, 6931, 7425, 7936, 8464, 9009, 9571, 10150, 10746, 11359, 11989, 12636, 13300
Offset: 0
Examples
a(1) = 17 * 1 + 0 - 16 = 1. a(2) = 17 * 2 + 1 - 16 = 19. a(3) = 17 * 3 + 19 - 16 = 54. - _Vincenzo Librandi_, Aug 06 2010
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- Elena Deza and Michel M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
- Jeremy Gardiner, Table of n, a(n) for n = 0..999
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
A051871 := proc(n) n*(17*n-15)/2 ; end proc: seq(A051871(n),n=0..30) ; # R. J. Mathar, Feb 05 2011
-
Mathematica
Table[(17n^2 - 15n)/2, {n, 0, 39}] (* Alonso del Arte, Feb 19 2015 *)
-
PARI
a(n)=n*(17*n-15)/2; \\ Charles R Greathouse IV, Jan 24 2014
Formula
a(n) = n(17n-15)/2.
G.f.: x*(1+16*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 17*n + a(n-1) - 16 (with a(0) = 0). - Vincenzo Librandi, Aug 06 2010
a(17*a(n) + 137*n + 1) = a(17*a(n) + 137*n) + a(17*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 17/19. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 17*x^2/2). - Nikolaos Pantelidis, Feb 06 2023
Comments