A051885 Smallest number whose sum of digits is n.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 199, 299, 399, 499, 599, 699, 799, 899, 999, 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9999, 19999, 29999, 39999, 49999, 59999, 69999, 79999, 89999, 99999, 199999, 299999, 399999, 499999
Offset: 0
Links
- Iain Fox, Table of n, a(n) for n = 0..9000 (first 101 terms from Reinhard Zumkeller)
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- A. Murthy, Exploring some new ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000.
- Index entries for sequences related to dismal (or lunar) arithmetic
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,10,-10).
Crossrefs
Programs
-
Haskell
a051885 n = (m + 1) * 10^n' - 1 where (n',m) = divMod n 9 -- Reinhard Zumkeller, Jul 10 2011
-
Magma
[i*10^j-1: i in [1..9], j in [0..5]];
-
Maple
b:=10; t1:=[]; for j from 0 to 15 do for i from 1 to b-1 do t1:=[op(t1), i*b^j-1]; od: od: t1; # N. J. A. Sloane, Jan 25 2011
-
Mathematica
a[n_] := (Mod[n, 9] + 1)*10^Floor[n/9] - 1; Table[a[n], {n, 0, 49}](* Jean-François Alcover, Dec 01 2011, after Henry Bottomley *)
-
PARI
A051885(n) = (n%9+1)*10^(n\9)-1 \\ M. F. Hasler, Jun 17 2012
-
PARI
first(n) = Vec(x*(x^2 + x + 1)*(x^6 + x^3 + 1)/((x - 1)*(10*x^9 - 1)) + O(x^n), -n) \\ Iain Fox, Dec 30 2017
-
Python
def A051885(n): return ((n % 9)+1)*10**(n//9)-1 # Chai Wah Wu, Apr 04 2021
Formula
These are the numbers i*10^j-1 (i=1..9, j >= 0). - N. J. A. Sloane, Jan 25 2011
a(n) = ((n mod 9) + 1)*10^floor(n/9) - 1 = a(n-1) + 10^floor((n-1)/9). - Henry Bottomley, Apr 24 2001
a(n) = A037124(n+1) - 1. - Reinhard Zumkeller, Jan 03 2008, Jul 10 2011
G.f.: x*(x^2+x+1)*(x^6+x^3+1) / ((x-1)*(10*x^9-1)). - Colin Barker, Feb 01 2013
Extensions
More terms from James Sellers, Dec 16 1999
Offset fixed by Reinhard Zumkeller, Jul 10 2011
Comments