cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051916 The Greek sequence: 2^a * 3^b * 5^c where a = 0,1,2,3,..., b,c in {0,1}, excluding the terms 1,2; that is: (a,b,c) != (0,0,0), (1,0,0).

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 128, 160, 192, 240, 256, 320, 384, 480, 512, 640, 768, 960, 1024, 1280, 1536, 1920, 2048, 2560, 3072, 3840, 4096, 5120, 6144, 7680, 8192, 10240, 12288, 15360, 16384, 20480
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Dec 17 1999

Keywords

Comments

From Reinhard Zumkeller, Mar 19 2010: (Start)
Union of A007283, A020707, A020714, and A110286.
Intersection of A051037 and A003401 apart from terms 1 and 2. (End)

References

  • George E. Martin, Geometric Constructions, New York: Springer, 1997, p. 140.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x(3x^7+2x^6+2x^5+2x^4+6x^3+5x^2+4x+3)/(1-2x^4),{x,0,60}],x] (* Harvey P. Dale, Dec 23 2012 *)
  • PARI
    Vec(x*(3*x^7+2*x^6+2*x^5+2*x^4+6*x^3+5*x^2+4*x+3)/(1-2*x^4)+O(x^99)) \\ Charles R Greathouse IV, Oct 12 2012
    
  • Python
    def A051916(n): return n+2 if n<5 else (15,1,5,3)[m:=n&3]<<(n>>2)+(-2,2,0,1)[m] # Chai Wah Wu, Apr 02 2025

Formula

G.f.: x*(3*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 6*x^3 + 5*x^2 + 4*x + 3)/(1 - 2*x^4).
a(n+4) = 2*a(n) for n > 8. - Reinhard Zumkeller, Mar 19 2010
Sum_{n>=1} 1/a(n) = 17/10. - Amiram Eldar, Jan 18 2023

Extensions

More terms from James Sellers, Dec 18 1999
Offset corrected by Reinhard Zumkeller, Mar 10 2010