cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051920 a(n) = binomial(n, floor(n/2)) + 1.

Original entry on oeis.org

2, 2, 3, 4, 7, 11, 21, 36, 71, 127, 253, 463, 925, 1717, 3433, 6436, 12871, 24311, 48621, 92379, 184757, 352717, 705433, 1352079, 2704157, 5200301, 10400601, 20058301, 40116601, 77558761, 155117521, 300540196, 601080391, 1166803111
Offset: 0

Views

Author

N. J. A. Sloane, Dec 18 1999

Keywords

Comments

With the exception of the initial 2s, these are numbers such that if Pascal's triangle is written in base a(n) - 1, the first n - 2 rows give the digits of the powers of a(n) written in that base. This is most often noticed for the powers of 11 since of course we use decimal. - Alonso del Arte, Jul 10 2011

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [2, 2, 3][n+1],
          ((n^2+n-4)*a(n-1) +2*(n-1)*(2*n-5)*a(n-2)
           -4*(n-1)*(n-2)*a(n-3)) / ((n+1)*(n-2)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 03 2014
  • Mathematica
    a[n_] := a[n] = (4(n-1) a[n-2] + 2a[n-1] - 3n + 3)/(n+1); a[0] = a[1] = 2; Array[a, 50, 0] (* Jean-François Alcover, Jan 19 2017 *)
    Table[Binomial[n,Floor[n/2]],{n,0,40}]+1 (* Harvey P. Dale, Jan 20 2019 *)
  • PARI
    a(n)=binomial(n,n\2)+1 \\ Charles R Greathouse IV, Feb 05 2013

Formula

G.f.: -((2*x-1)*(3*x-1) +(x-1)*sqrt(1 - 4*x^2))/(2*x*(x-1)*(2*x-1)). - Thomas Baruchel, Jun 26 2018
0 = 1 +a(n)*(-2 +4*a(n+1) -2*a(n+2)) +a(n+1)*(-1 -2*a(n+1) +a(n+2)) +a(n+2) for all n>=0. - Michael Somos, Jun 30 2018