A051934 a(n) is the smallest palindrome > a(n-1) such that a(1)+a(2)+...+a(n) is a prime.
2, 3, 6, 8, 22, 66, 242, 252, 262, 414, 444, 626, 676, 686, 808, 2442, 2552, 2992, 4664, 4884, 6006, 6226, 6666, 8228, 20202, 20302, 20402, 40204, 40304, 60606, 61116, 61716, 80608, 202202, 207702, 212212, 402204, 405504, 609906, 619916, 623326, 801108
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..186 (terms 1..100 from Reinhard Zumkeller)
Programs
-
Haskell
a051934 n = a051934_list !! (n-1) a051934_list = f 0 a002113_list where f x (m:ms) | a010051 (x + m) == 1 = m : f (x + m) ms | otherwise = f x ms -- Reinhard Zumkeller, Dec 28 2011
-
Mathematica
palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t = {s = 2}; Do[If[palQ[n] && PrimeQ[x = s + n], AppendTo[t, n]; s = x], {n, 3, 815000}]; t (* Jayanta Basu, Jun 24 2013 *) sp[{t_,a_}]:=Module[{k=a+1},While[!PalindromeQ[k]||!PrimeQ[t+k],k++];{t+k,k}]; NestList[ sp,{2,2},50][[;;,2]] (* Harvey P. Dale, Jul 08 2024 *)
Extensions
Missing a(29)=40304 inserted by Reinhard Zumkeller, Dec 28 2011
Comments