cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051937 Truncated triangular pyramid numbers: a(n) = Sum_{k=4..n} (k*(k+1)/2 - 9).

Original entry on oeis.org

1, 7, 19, 38, 65, 101, 147, 204, 273, 355, 451, 562, 689, 833, 995, 1176, 1377, 1599, 1843, 2110, 2401, 2717, 3059, 3428, 3825, 4251, 4707, 5194, 5713, 6265, 6851, 7472, 8129, 8823, 9555, 10326, 11137, 11989, 12883, 13820, 14801, 15827, 16899, 18018
Offset: 4

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 21 1999

Keywords

Comments

Binomial transform of [1, 6, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson, Oct 22 2007

Crossrefs

Cf. A000292.

Programs

  • Magma
    I:=[1, 7, 19, 38]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Apr 28 2012
    
  • Mathematica
    CoefficientList[Series[(1+3*x-3*x^2)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 28 2012 *)
    LinearRecurrence[{4,-6,4,-1},{1,7,19,38},50] (* Harvey P. Dale, Aug 12 2012 *)
  • PARI
    a(n)=(n-3)*(n^2+6*n-34)/6 \\ Charles R Greathouse IV, Nov 10 2015

Formula

a(n) = (1/6)*(n-3)*(n^2+6*n-34).
G.f.: x^4*(1+3*x-3*x^2)/(1-x)^4. - Colin Barker, Mar 19 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 28 2012
a(n) = A000290(n-4) + A005286(n-4). - Ivan N. Ianakiev, Dec 24 2019