A051946 Expansion of g.f.: (1+4*x)/(1-x)^7.
1, 11, 56, 196, 546, 1302, 2772, 5412, 9867, 17017, 28028, 44408, 68068, 101388, 147288, 209304, 291669, 399399, 538384, 715484, 938630, 1216930, 1560780, 1981980, 2493855, 3111381, 3851316, 4732336, 5775176, 7002776, 8440432
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 5).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
GAP
List([0..40], n-> (5*n+6)*Binomial(n+5,5)/6); # G. C. Greubel, Aug 28 2019
-
Magma
[(5*n+6)*Binomial(n+5,5)/6: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
-
Maple
a:=n->(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720: seq(a(n),n=0..35); # Emeric Deutsch
-
Mathematica
CoefficientList[Series[(1+4x)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
-
PARI
vector(40, n, (5*n+1)*binomial(n+4,5)/6) \\ G. C. Greubel, Aug 28 2019
-
Sage
[(5*n+6)*binomial(n+5,5)/6 for n in (0..40)] # G. C. Greubel, Aug 28 2019
Formula
a(n) = binomial(n+5,5)*(5*n+6)/6.
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720. - Emeric Deutsch, Jun 18 2005
a(n) = A034264(n+1). - R. J. Mathar, Oct 14 2008
Extensions
Corrected and extended by Emeric Deutsch, Jun 18 2005
Comments