cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051959 Expansion of (1+6*x)/((1-2*x-x^2)*(1-x)^2).

Original entry on oeis.org

1, 10, 36, 104, 273, 686, 1688, 4112, 9969, 24114, 58268, 140728, 339809, 820438, 1980784, 4782112, 11545121, 27872474, 67290196, 162453000, 392196337, 946845822, 2285888136, 5518622256, 13323132817, 32164888066, 77652909132, 187470706520, 452594322369, 1092659351462, 2637913025504, 6368485402688
Offset: 0

Views

Author

Barry E. Williams, Jan 04 2000

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,10,36,104]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2) +Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
    
  • Mathematica
    LinearRecurrence[{4,-4,0,1},{1,10,36,104},40] (* Vincenzo Librandi, Jun 22 2012 *)
  • SageMath
    def A051959(n):
        @CachedFunction
        def a(n):
            if n<4: return (1,10,36,104)[n]
            else: return 4*a(n-1) -4*a(n-2) +a(n-4)
        return a(n)
    [A051959(n) for n in range(41)] # G. C. Greubel, Nov 11 2024

Formula

a(n) = 2*a(n-1) + a(n-2) + (7*n+1), with a(0)=1, a(1)=10.
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4).
a(n) = ( (25 + 17*sqrt(2))*(1+sqrt(2))^n - (25 - 17*sqrt(2))*(1-sqrt(2))^n )/(4*sqrt(2)) - (7*n + 15)/2.
a(n) = (1/2)*(4*Pell(n+2) - 3*Pell(n) - 7*n - 15), with Pell(n) = A000129(n). - Ralf Stephan, May 15 2007
E.g.f.: (1/4)*exp(x)*(-30 - 14*x + 25*sqrt(2)*sinh(sqrt(2)*x) + 34*cosh(sqrt(2)*x)). - G. C. Greubel, Nov 11 2024