A052021 Sum of digits of n is the largest prime factor of n.
2, 3, 5, 7, 12, 50, 70, 308, 320, 364, 476, 500, 605, 700, 704, 715, 832, 935, 1088, 1183, 1547, 1729, 2401, 2584, 2618, 2704, 2926, 3080, 3200, 3536, 3640, 3952, 4225, 4760, 4784, 4913, 5000, 5491, 5525, 5819, 5831, 6050, 6175, 6517, 6647, 7000, 7040, 7150
Offset: 1
Examples
13685 has sum of digits '23' and 13685 = 5*7*17*'23'.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a052021 n = a052021_list !! (n-1) a052021_list = tail $ filter (\x -> a007953 x == a006530 x) [1..] -- Reinhard Zumkeller, Nov 06 2011
-
Maple
A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc: for n from 1 to 8000 do if A007953(n) = A006530(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, May 30 2010
-
Mathematica
Select[Range[2,8000],FactorInteger[#][[-1,1]]==Total[IntegerDigits[#]]&] (* Harvey P. Dale, Oct 17 2012 *)
Formula
Extensions
Single-digit primes added by R. J. Mathar, May 30 2010
Offset corrected by Reinhard Zumkeller, Nov 05 2011