cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052022 Smallest number m larger than prime(n) such that prime(n) = sum of digits of m and prime(n) = largest prime factor of m (or 0 if no such number exists).

Original entry on oeis.org

12, 50, 70, 308, 364, 476, 1729, 4784, 9947, 8959, 38998, 588965, 179998, 1879859, 5988788, 38778989, 79693999, 287978998, 1489989599, 4595969989, 6888999949, 45999897788, 197999598599, 3999966997975, 6849998899886, 7885998969988, 35889999789995, 39969896999968
Offset: 2

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

Does there exist a solution for every prime p?

Examples

			p=43 -> a(14)=179998 -> 1+7+9+9+9+8 = 43 and 179998 = 2*7*13*23*43. p=47 -> a(15)=1879859 -> 1+8+7+9+8+5+9 = 47 and 1879859 = 23*37*47*47.
		

Crossrefs

Programs

  • Maple
    A052022(n) = {
      local( p,m );
      p=prime(n) ;
      for(k=2,1000000000,
        m=k*p;
        if( A007953(m) == p && A006530(m) == p,
            return(m) ;
        )
      ) ;
    } # R. J. Mathar, Mar 02 2012
  • Mathematica
    snm[n_]:=Module[{k=2,p=Prime[n],m},m=k p;While[Total[ IntegerDigits[ m]]!=p||FactorInteger[m][[-1,1]]!=p,k++;m=k p];m]; Array[snm,18,2] (* Harvey P. Dale, Feb 28 2012 *)
  • PARI
    a(n) = my(p=prime(n), k=2, m=k*p); while ((sumdigits(m) != p) || (vecmax(factor(m)[,1]) != p), k++; m = k*p); m; \\ Michel Marcus, Apr 09 2021

Extensions

a(20)-a(29) from Donovan Johnson, May 09 2012