A052022 Smallest number m larger than prime(n) such that prime(n) = sum of digits of m and prime(n) = largest prime factor of m (or 0 if no such number exists).
12, 50, 70, 308, 364, 476, 1729, 4784, 9947, 8959, 38998, 588965, 179998, 1879859, 5988788, 38778989, 79693999, 287978998, 1489989599, 4595969989, 6888999949, 45999897788, 197999598599, 3999966997975, 6849998899886, 7885998969988, 35889999789995, 39969896999968
Offset: 2
Examples
p=43 -> a(14)=179998 -> 1+7+9+9+9+8 = 43 and 179998 = 2*7*13*23*43. p=47 -> a(15)=1879859 -> 1+8+7+9+8+5+9 = 47 and 1879859 = 23*37*47*47.
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..34
Programs
-
Maple
A052022(n) = { local( p,m ); p=prime(n) ; for(k=2,1000000000, m=k*p; if( A007953(m) == p && A006530(m) == p, return(m) ; ) ) ; } # R. J. Mathar, Mar 02 2012
-
Mathematica
snm[n_]:=Module[{k=2,p=Prime[n],m},m=k p;While[Total[ IntegerDigits[ m]]!=p||FactorInteger[m][[-1,1]]!=p,k++;m=k p];m]; Array[snm,18,2] (* Harvey P. Dale, Feb 28 2012 *)
-
PARI
a(n) = my(p=prime(n), k=2, m=k*p); while ((sumdigits(m) != p) || (vecmax(factor(m)[,1]) != p), k++; m = k*p); m; \\ Michel Marcus, Apr 09 2021
Extensions
a(20)-a(29) from Donovan Johnson, May 09 2012
Comments