cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052038 First nonzero digit in expansion of 1/n.

Original entry on oeis.org

1, 5, 3, 2, 2, 1, 1, 1, 1, 1, 9, 8, 7, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

The number of times each digit occurs for numbers < 10^k:
...\a(n)==1.........2.......3........4........5........6........7........8........9
10^k\
1.........5.........2........1........0........1........0........0........0........0
2........55........19........9........5........5........2........2........1........1
3.......555.......186.......92.......55.......39.......26.......19.......15.......12
4......5555......1853......925......555......373......264......197......154......123
5.....55555.....18520.....9258.....5555.....3707.....2645.....1982.....1543.....1234
6....555556....185187....92591....55555....37041....26454....19839....15432....12345
7...5555555...1851854...925924...555555...370375...264549...198410...154321...123456
8..55555555..18518521..9259257..5555555..3703709..2645501..1984124..1543210..1234567
9.555555555.185185188.92592590.55555555.37037043.26455025.19841266.15432099.12345678
...
Inf. ...5/9......5/27.....5/54.....5/90.....1/27........?........?........?........?

Crossrefs

Programs

  • Mathematica
    f[n_] := RealDigits[1/n, 10, 12][[1, 1]]; Array[f, 105]

Formula

a(n) = floor(10^floor(1+log_10(n-1))/n). After 10^k terms the number of times m will have appeared will be about 10^(k+1)/(9*m*(m+1)), e.g., 1 will appear just over 55.5% of the time. - Henry Bottomley, May 11 2001
a(n) = A000030(floor(A011557(k)/n)) for k >= A004218(n). - Reinhard Zumkeller, Feb 27 2011

A259228 Lexicographically earliest sequence of distinct terms such that the first significant digits of 1/n start with a(n).

Original entry on oeis.org

1, 5, 3, 2, 20, 16, 14, 12, 11, 10, 9, 8, 7, 71, 6, 62, 58, 55, 52, 50, 4, 45, 43, 41, 40, 38, 37, 35, 34, 33, 32, 31, 30, 29, 28, 27, 270, 26, 25, 250, 24, 23, 232, 22, 222, 21, 212, 208, 204, 200, 19, 192, 18, 185, 181, 17, 175, 172, 169, 166, 163, 161, 15
Offset: 1

Views

Author

Paul Tek, Jun 21 2015

Keywords

Comments

This is a permutation of the positive integers.
All fixed points are in A065924.

Examples

			+----+---------+----+
|  n |   1/n   |a(n)|
+----+---------+----+
|  1 | 1       |  1 |
|  2 | 0.5...  |  5 |
|  3 | 0.3...  |  3 |
|  4 | 0.2...  |  2 |
|  5 | 0.20... | 20 |
|  6 | 0.16... | 16 |
|  7 | 0.14... | 14 |
|  8 | 0.12... | 12 |
|  9 | 0.11... | 11 |
| 10 | 0.10... | 10 |
+----+---------+----+
		

Crossrefs

Programs

  • PARI
    See Link section.

A099406 Decimal part of 1/a(n) starts with the n-th prime (leading zeros excluded).

Original entry on oeis.org

4, 3, 2, 13, 9, 72, 56, 51, 42, 34, 32, 27, 24, 23, 21, 186, 167, 162, 148, 14, 136, 126, 12, 112, 103, 99, 97, 93, 91, 88, 782, 76, 725, 715, 67, 66, 633, 61, 596, 575, 556, 55, 521, 516, 506, 501, 472, 447, 44, 435, 428, 417, 414, 397, 388, 38, 371, 368, 36, 355, 353
Offset: 1

Views

Author

Gil Broussard, Nov 17 2004

Keywords

Examples

			a(1)= 4 -> 1/4 =0.{2}500000...
a(2)= 3 -> 1/3 =0.{3}333333...
a(3)= 2 -> 1/2 =0.{5}000000...
a(4)=13 -> 1/13=0.0{7}69230...
a(100)=1846 -> 1/1846=0.000{541}712 and 541 is the 100th prime.
		

Crossrefs

Formula

a(n) = A052039(prime(n)). - Michel Marcus, Jan 08 2025

A326818 a(n) is the smallest k such that the first significant digits of 1/k coincide with n.

Original entry on oeis.org

1, 4, 3, 21, 2, 15, 13, 12, 11, 1, 9, 8, 72, 7, 63, 6, 56, 53, 51, 5, 46, 44, 42, 41, 4, 38, 36, 35, 34, 33, 32, 31, 3, 29, 28, 271, 27, 26, 251, 25, 24, 233, 23, 223, 22, 213, 21, 205, 201, 2, 193, 19, 186, 182, 18, 176, 173, 17, 167, 164, 162, 16, 157, 154, 152
Offset: 1

Views

Author

Giovanni Resta, Oct 20 2019

Keywords

Comments

This sequence differs from A052039 in how it treats reciprocals with terminating representation, i.e., the values 1/k for integers k whose prime factors are 2 and/or 5. For example, here we assume 1/5 = 0.2000... which leads to a(20) = 5, while in A052039 we consider 1/5 = 0.2 (without trailing zeros), which leads to A052039(20) = 48 instead.

Examples

			a(123) = 81 because 1/81 = 0.0(123)4... and 81 is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{d = IntegerDigits[n], m, k = 1}, m = Length[d]; While[ RealDigits[1/k, 10, m][[1]] != d, k++]; k]; Array[a, 65]
Showing 1-4 of 4 results.