cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052045 Cubes lacking the digit zero in their decimal expansion.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 1728, 2197, 2744, 3375, 4913, 5832, 6859, 9261, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 29791, 32768, 35937, 42875, 46656, 54872, 59319, 68921, 85184, 91125, 97336, 117649, 132651, 148877
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

This sequence is infinite since A052427(n)^3 is a term for all n>=0. - Amiram Eldar, Nov 23 2020

Crossrefs

Programs

  • Maple
    select(t -> not has(convert(t,base,10),0), [seq(m^3,m=1..10^3)]); # Robert Israel, Aug 24 2014
  • Mathematica
    Select[Range[53]^3, DigitCount[#, 10, 0] == 0 &] (* Amiram Eldar, Nov 23 2020 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (vecmin(digits(cub=n^3)), print1(cub, ", ")););} \\ Michel Marcus, Aug 25 2014
  • Python
    A052045 = [n**3 for n in range(1,10**5) if not str(n**3).count('0')]
    # Chai Wah Wu, Aug 24 2014
    

Formula

Intersection of A052382 and A000578; A168046(a(n))*A010057(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) = A052044(n)^3. - Amiram Eldar, Nov 23 2020