A052045 Cubes lacking the digit zero in their decimal expansion.
1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 1728, 2197, 2744, 3375, 4913, 5832, 6859, 9261, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 29791, 32768, 35937, 42875, 46656, 54872, 59319, 68921, 85184, 91125, 97336, 117649, 132651, 148877
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
- Eric Weisstein's World of Mathematics, Zerofree [From _Reinhard Zumkeller_, Dec 01 2009]
Crossrefs
Programs
-
Maple
select(t -> not has(convert(t,base,10),0), [seq(m^3,m=1..10^3)]); # Robert Israel, Aug 24 2014
-
Mathematica
Select[Range[53]^3, DigitCount[#, 10, 0] == 0 &] (* Amiram Eldar, Nov 23 2020 *)
-
PARI
lista(nn) = {for (n=1, nn, if (vecmin(digits(cub=n^3)), print1(cub, ", ")););} \\ Michel Marcus, Aug 25 2014
-
Python
A052045 = [n**3 for n in range(1,10**5) if not str(n**3).count('0')] # Chai Wah Wu, Aug 24 2014
Formula
Intersection of A052382 and A000578; A168046(a(n))*A010057(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) = A052044(n)^3. - Amiram Eldar, Nov 23 2020
Comments