cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052121 Triangle of coefficients of polynomials enumerating trees with n labeled nodes by inversions.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 3, 1, 24, 36, 30, 20, 10, 4, 1, 120, 240, 270, 240, 180, 120, 70, 35, 15, 5, 1, 720, 1800, 2520, 2730, 2520, 2100, 1610, 1140, 750, 455, 252, 126, 56, 21, 6, 1, 5040, 15120, 25200, 31920, 34230, 32970, 29400, 24640, 19600, 14840, 10696, 7336
Offset: 1

Views

Author

N. J. A. Sloane, Jan 23 2000

Keywords

Comments

Specialization of Tutte polynomials for complete graphs. See the Gessel and Sagan paper. - Tom Copeland, Jan 17 2017

Examples

			1 :   1;
2 :   1;
3 :   2,    1;
4 :   6,    6,    3,    1;
5 :  24,   36,   30,   20,   10,    4,    1;
6 : 120,  240,  270,  240,  180,  120,   70,   35,  15,   5,   1;
7 : 720, 1800, 2520, 2730, 2520, 2100, 1610, 1140, 750, 455, 252, 126, 56, 21, 6, 1;
...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.48.

Crossrefs

Programs

  • Maple
    for n from 2 to 10 do
        add( J[i]*(x^i-1)/(x-1)*y^i/i! ,i=1..n-1) ;
        exp(%) ;
        coeftayl(%,y=0,n-1)*(n-1)! ;
        expand(%) ;
        J[n] := factor(convert(%,polynom)) ;
        for t from 0 to (n-1)*(n-2)/2 do
            printf("%d,",coeff(J[n],x,t)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 02 2018
  • Mathematica
    rows = 8; egf = (y - 1)*Log[Sum[(y^Binomial[n, 2]*(x^n/n!))/(y - 1)^n, {n, 0, rows + 1}]]; t = CoefficientList[ Series[egf, {x, 0, rows}, {y, 0, 3*rows}], {x, y}] ; Table[(n - 1)!*t[[n, k]], {n, 2, rows + 1}, {k, 1, Binomial[n - 2, 2] + 1}] // Flatten (* Jean-François Alcover, Dec 10 2012, after Vladeta Jovovic *)

Formula

Sum_{k=0..binomial(n-1,2)} T(n,k) = A000272(n).
Sum_{k=0..binomial(n-1,2)} (-1)^k*T(n,k) = A000111(n-1).
E.g.f.: (y-1)*log(Sum_{n>=0} (y-1)^(-n)*y^binomial(n, 2)*x^n/n!).
Sum_{k=0..binomial(n-1,2)} k*T(n,k) = A057500(n). - Alois P. Heinz, Nov 29 2015
Equals the coefficient [x^t] of the polynomial J_n(x) which satisfies sum_{>=0} J_{n+1}(x)*y^n/n! = exp[ sum_{n>=1} J_n(x) (x^n-1)/(x-1)*y^n/n!]. - R. J. Mathar, Jul 02 2018

Extensions

Formulae and more terms from Vladeta Jovovic, Apr 06 2001