cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052134 Numerators of coefficients in function a(x) such that a(a(a(x))) = sinh x.

Original entry on oeis.org

1, 1, -7, 643, -13583, 29957, -24277937, 6382646731, 2027394133729, -10948179003324221, 177623182156029053, -126604967848904128751, -2640658729595838040517543, 423778395125199663867841, 134802774190189008299452419971
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2000

Keywords

References

  • W. C. Yang, Composition equations, preprint, 1999.

Crossrefs

Cf. A052135. See also A048602, A048603, etc.
Apart from signs, same as A052132?

Programs

  • Mathematica
    n = 15; m (* = maximal degree *)= 2n - 1; a[x_] = Sum[c[k]*x^k, {k, 1, m, 2}]; coes = DeleteCases[ CoefficientList[ Series[ a@a@a@x - Sinh[x], {x, 0, m}], x] // Rest, 0]; Do[s[k] = Solve[coes[[1]] == 0] // First; coes = coes /. s[k] // Rest, {k, 1, n}]; (CoefficientList[a[x] /. Flatten@Array[s, n], x] // Numerator // Partition[#, 2] &)[[All, 2]] (* Jean-François Alcover, Jan 04 2013 *)

Extensions

More terms from Vladeta Jovovic, Jul 16 2002

A052132 Numerators of coefficients in function a(x) such that a(a(a(x))) = sin x.

Original entry on oeis.org

1, -1, -7, -643, -13583, -29957, -24277937, -6382646731, 2027394133729, 10948179003324221, 177623182156029053, 126604967848904128751, -2640658729595838040517543, -423778395125199663867841
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2000

Keywords

References

  • W. C. Yang, Composition equations, preprint, 1999.

Crossrefs

Cf. A052135. See also A048602, A048603, etc.
Apart from signs, same as A052134?

Programs

  • Mathematica
    n = 14; m = 2 n - 1 (* m = maximal degree *); a[x_] = Sum[c[k] x^k, {k, 1, m, 2}] ; coes = DeleteCases[ CoefficientList[Series[a @ a @ a @ x - Sin[x], {x, 0, m}], x] // Rest , 0]; Do[s[k] = Solve[coes[[1]] == 0] // First; coes = coes /. s[k] // Rest, {k, 1, n}]
    (CoefficientList[a[x] /. Flatten @ Array[s, n], x] // Numerator // Partition[#, 2] &)[[All, 2]]
    (* Jean-François Alcover, May 04 2011 *)
  • Maxima
    T(n,m):=if n=m then 1 else 1/3*((((-1)^(n-m)+1)*sum((2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i),i,0,m/2))/(2^m*n!)-sum(T(k,m)*sum(T(n,i)*T(i,k),i,k,n),k,m+1,n-1)-T(m,m)*sum(T(n,i)*T(i,m),i,m+1,n-1));
    makelist(num(T(2*n-1,1)),n,1,7); /* Vladimir Kruchinin, Mar 10 2012 */

Formula

a(n) = numerator(T(2*n-1,1)), T(n,m) = 1/3*((((-1)^(n-m)+1)*sum(i=0..m/2, (2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i)))/(2^m*n!)-sum(k=m+1..n-1, T(k,m)*sum(i=k..n, T(n,i)*T(i,k)))-T(m,m)*sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 10 2012

Extensions

More terms from R. J. Mathar, coded equivalent to A052136 - R. J. Mathar, Dec 09 2009

A072350 E.g.f. A(x) satisfies A(A(x)) = tan(x), where A(x) = Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)!.

Original entry on oeis.org

1, 1, 3, 17, 225, 3613, -42997, 8725357, 2116966081, -549193907111, -114757574954509, 117893333517545097, 14433599120070484321, -65568697910890921624715, 2968238619232726100394235, 86999609037195113208781248165
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2002

Keywords

Comments

The inverse of this g.f. A(x) is the g.f. of A095885. - Paul D. Hanna, Dec 09 2004

Examples

			a(x) = x/1!+x^3/3!+3*x^5/5!+17*x^7/7!+225*x^9/9!+3613*x^11/11!-42997*x^13/13!+...
		

Crossrefs

Cf. A095885 (inverse).

Programs

  • Mathematica
    a[n_] := Module[{A, B, F}, F = Tan[x + O[x]^(2n+1)]; A = F; For[i = 0, i <= 2n-1, i++, B = InverseSeries[A, x]; A = (A + (B /. x -> F))/2]; If[n<1, 0, (2n-1)!*SeriesCoefficient[A, {x, 0, 2n-1}]]]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Oct 29 2015, adapted from PARI *)
  • PARI
    {a(n)=local(A,B,F);F=tan(x+O(x^(2*n+1)));A=F; for(i=0,2*n-1,B=serreverse(A);A=(A+subst(B,x,F))/2); if(n<1,0,(2*n-1)!*polcoeff(A,2*n-1,x))} \\ Paul D. Hanna, Dec 09 2004

Formula

a(n)=(2*n-1)!*T(2*n-1,1), T(n,k)=if n=k then 1 else 1/2*(T059419(n,k)*k!/n!-sum(i=k+1..n-1, T(n,i)*T(i,k))). [Vladimir Kruchinin, Nov 11 2011]

Extensions

More terms from Paul D. Hanna, Dec 09 2004
Showing 1-3 of 3 results.